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CHAPTER 1

INTRODUCTION

An analysis of the electromagnetic (EM) plane wave scattering by open-ended
waveguide cavity configurations is useful for dealing with radar cross-section (RCS)
and EM penetration problems. In this report, four different approximate but useful
approaches are described for analyzing the high frequency EM scattering by a fairly
general class of semi-infinite open-ended waveguide cavities which admit treatment
by these methods. The cavities under consideration may contain an interior termi-
nation; in addition, the interior cavity walls may be perfectly-conducting with or
without a layer of absorbing material coating them, or the walls may be character-
ized by an impedance boundary condition. For the present analysis, the rim edge
at the open end of the cavity is assumed to be sharp and the scattering by the rim
is included in addition to the scattering by the interior of the waveguide cavity.
All other external scattering features are not of interest and will not be considered
in the present work, although in many instances they can be analyzed using the
geometrical theory of diffraction (GTD) (1], and its uniform version (UTD) [2,3].

The four different approaches considered in this report for analyzing the EM
scattering/penetration by the above class of open-ended waveguide cavities are
respectively based on:

(1) a hybrid combination of asymptotic high frequency and modal methods,



(2) the geometrical optics ray method,

(3) the use of Gaussian beams, and

(4) a generalized ray expansion method.

It is noted that a rigorous analysis of the problem under consideration is
possible only for a very small number of special cavity shapes, e.g., cavities formed
by open-ended semi-infinite parallel plate and circular waveguides with a planar
interior termination. Hence, it is necessary to resort to approximate techniques of
analysis such as those indicated above. All of these approaches involve the use of
high frequency approximations.

The approach based on a hybrid combination of asymptotic and modal tech-
niques, which is employed within the framework of the self-consistent multiple scat-
tering method (or the generalized scattering matrix method) [4], can be applied to
efficiently treat the EM scattering by open-ended cavities which can be built up by
Joining together waveguide sections for which the modes and their corresponding
modal rays are known analytically in closed form [5]-[9]. Some examples of cavities
which can be built up from different piecewise separable waveguide sections are
illustrated in Figure 1. The high frequency asymptotic methods, e.g., GTD (1]
and UTD [2,3] as well as the equivalent current method (ECM) [3,10] and also
the physical theory of diffraction (PTD) (3]-[12], are employed in this hybrid for-
mulation to find the elements of the generalized modal scattering matrices which
describe the wave reflection and transmission properties of the junctions between
the different waveguide sections. The asymptotic methods provide relatively sim-
ple expressions for the elements of the generalized modal scattering matrices in
contrast to the more cumbersome and far less efficient numerical modal matching
or integral equation techniques.

In principle, the sizes of the generalized modal scattering matrices are infinite




a) cavity with varying rectangular cross-section

b) cavity with circular cross-section

Figure 1: Examples of open-ended waveguide cavities made up of piecewise
uniform waveguide sections.



as the concept of ordinary scattering matrices is generalized to include both the
finite number of propagating as well as the infinite number of evanescent modes
in closed waveguide regions. However, in practice, the sizes of the scattering ma-
trices are dictated by just the number of propagating modes and a few significant
evanescent modes which exist within the waveguide sections on either side of the
junctions. If the waveguide sections are sufficiently long then the effects of the
evanescent modes can be ignored.

Finally, the field scattered by the waveguide cavity which includes the effects
of all the multiple wave interactions between the various junctions is calculated in
terms of the junction scattering matrices via the self-consistent multiple scattering
method, or the generalized scattering matrix technique [4]; it is assumed in this
calculation that the scattering (or reflection) matrix of the interior termination
can also be found.

An interesting selective modal behavior which can be inferred from the hy-
brid asymptotic-modal analysis is that the modes most strongly coupled into (or
radiated from) the open end are those whose modal ray angles are most nearly
parallel to the direction of incidence (or scattering) [6,13]. The modal ray an-
gles alluded to in the preceding statement regarding the selective modal scheme
are those associated with the modes in the first waveguide section containing the
open end. This selective modal scheme, which is demonstrated in Figure 2, can
be employed to increase the efficiency of computation of the field scattered from
open-ended cavities, especially at high frequencies where a large number of modes
can be excited.

It is noted that a perturbation of the hybrid approach can also be employed
in some relatively simple cases to efficiently but approximately take into account

the effect of a thin absorber coating on the interior walls of the waveguide sections

4
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Figure 2: RCS pattern of a piecewise linearly tapered open-ended waveguide
cavity, calculated using the hybrid asymptotic modal method, which
demonstrates the selective modal scheme.



comprising the cavity [7]. On the other hand, one could also use a more rigorous
procedure, but that would in general be very cumbersome both analytically and
numerically.

While the hybrid asymptotic modal procedure is useful, it is primarily suitable,
as mentioned previously, to treat cavities which can be built up from piecewise
separable waveguide configurations for which the modes (and modal rays) can be
found analytically in closed form. On the other hand, modes cannot be defined
in the conventional sense for waveguide cavities with non-uniformly varying cross-
sections, i.e., with walls that do not coincide with constant coordinate surfaces
in a separable coordinate system. An analysis of the EM scattering by slowly
varying but otherwise relatively arbitrarily shaped open-ended cavities, for which
the effects of diffraction by interior walls are small, can be performed approximately
via the geometrical optics (GO) ray approach used in conjunction with the aperture
integration (AI) method. [14]-[22]. In this technique, the part of the incident plane
wave which is intercepted by the aperture at the open end is initially divided into
a sufficiently large number of parallel ray tubes which are shot into the cavity as in
Figure 3. These ray tubes (or a dense grid of rays) are then tracked via all possible
cavity wall reflections to the interior termination and then back to the open end.
Figure 4 shows one such ray tube. Each reflection off the cavity wall is calculated
via the laws of ordinary GO. The polarization, divergence, phase and magnitude
of each ray tube is kept track of as it is traced through the cavity.

It is noted that the ray tubes which arrive from the termination to exit from
the open end generally exist only in a discrete set of directions, and hence give
rise to a discontinuous field behavior. Consequently, it is necessary to evaluate
the radiation integral over the equivalent sources defined by the exiting ray tubes

in the aperture to obtain a continuous value for the field that comes back out of
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Figure 4: GO ray tube tracked inside a waveguide cavity until it exits through
the open end.
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Figure 5: Projections of exiting ray tubes in the plane of the aperture of an
open-ended cavity.

the cavity [7], [14]-[19]. Figure 5 demonstrates several ray tubes exiting the cavity
and their projections in the plane of the aperture. This combination of GO and
Al procedures may be more precisely called the GO/AI technique, rather than
just the GO technique. The GO/AI technique has also been referred to as the
“shooting and bouncing rays” (SBR) technique in [16]-[19].

In [16], the EM scattering by a non-uniform S-shaped, three-dimensional
waveguide cavity with a planar short circuit termination is analyzed. It is noted
that such a conceptually simple GO/AI or SBR approach can also include the effect
of absorber coating on the interior cavity walls, or walls which are characterized
by a surface impedance condition. In general, one finds that the GO/AI (SBR)
based calculations usually provide the dominant trends present in the correspond-
ing results based on the more rigorous hybrid asymptotic-modal analysis. The
details of the scattered field patterns are generally not reproduced accurately at

moderately high frequencies by the GO/AI (SBR) procedure; on the other hand,



this technique in general predicts the peak envelope of the RCS quite well and it
tends to become increasingly more accurate at higher frequencies.

It is noted that one typically requires the density of ray tubes entering the
cavity aperture to be about 350 per square wavelength (in the aperture) or more
for convergence in the GO/AI (SBR) approach [16]. Thus, at high frequencies,
an extremely large number of ray tubes must be allowed to enter the cavity, and
each tube must be tracked through the whole length of the waveguide cavity and
back via multiple wall bounces in the GO/AI (SBR) approach. Likewise, at high
frequencies, an extremely large number of modes are excited which must be in-
cluded in the hybrid asymptotic-modal analysis of separable (or piecewise separa-
ble) waveguide cavity configurations. Therefore, both the GO/AI (SBR), and the
hybrid approaches discussed above become cumbersome and inefficient at high fre-
quencies. Recently, a hybrid ray-mode analysis, which is more efficient than either
the ray or the modal techniques used separately, has been developed in (23,24]
for describing the fields coupled into large open-ended parallel plate and circu-
lar waveguides. A different approach which potentially retains the simplicity and
generality of the GO approach, but which at the same time is more efficient and
overcomes some of the limitations of the GO ray technique, is considered here. The
latter approach, which like the GO/AI (SBR) approach is also a high frequency
approach, employs spectrally narrow or well collimated Gaussian beams (GB’s) to
represent the fields launched fro.m the open end into the waveguide cavity. Each
Gaussian beam (GB) is then tracked axially as a ray along the beam axis. This GB
approach, again like the GO/AT approach, is valid for slowly varying but otherwise
relatively arbitrarily shaped open-ended waveguide cavities for which the effects of
diffraction by the interior walls are small; furthermore, it can also account for the

effects of absorber coating on the interior cavity walls. In previous related work, a



single focussed beam (e.g., a laser beam) injected into a closed parallel plate or an
open dielectric waveguide of infinite extent was tracked paraxially as one GB via
the complex source point method [25]; also GB’s have been employed to represent
the far zone radiation fields of aperture antennas in free space [26]. This aperture
expansion method along with the complex source point method was applied in [27]
where an array of GB’s representing an aperture field was propagated in the pres-
ence of a curved dielectric layer, such as through a radome. However, the present
use of GB’s is somewhat different and novel in that they are employed to represent
the coupling of waves through an aperture into a closed interior waveguide region
when the initial excitation at the aperture is a non-Gaussian incident plane wave,
and the GB’s are tracked approximately like rays along their beam axes to the in-
terior termination via successive reflections at the cavity walls; furthermore, these
GB’s need to be tracked only once since the expansion of the GB’s in the aperture
can be made independent of the incident angle thereby making this approach quite
efficient. The GB expansion used here is different from the Gabor type expansion
used in [26] and [27] in the respect that all the beams are identical and equally
spaced in angle when initially launched. In contrast, the Gabor expansion [28,29]
gives rise to GB’s which have different parameters depending on the rotation of
their axes, and which are not equally spaced in angle [26]. While one can employ
this Gabor expansion for the aperture field here as well, the present approach is
chosen as it appears to be more convenient for our particular application to inte-
rior cavity configurations by allowing more freedom to select the GB parameters
suitable for axial GB tracking within the cavity. Basically, in the present GB ap-
proach, the fields in the cavity are found by first expanding the fields incident at
the open end in terms of shifted and rotated GB’s. In order to track beams axially

and maintain sufficient resolution even after successive reflections off the interior
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walls it is necessary to have well focussed or spectrally narrow GB’s. However,
such spectrally narrow GB’s have wide waists. It is thus important to be able
to have spectrally narrow GB’s whose waists can fit easily within the waveguide
cavity. Typically, the initial waists of the GB’s at the aperture plane should be
about half the width of the original aperture. The latter can be accomplished by
dividing the aperture at the open end into equally sized sub-apertures, and then
expanding the fields of each sub-apertureinto a superposition of rotated GB’s with
equal angular spacing between each rotated beam. A procedure is then developed
to determine the size of the sub-apertures and the number of GB’s launched per
sub-aperture, as well as the initial GB parameters.

There appear to be some important advantages to be gained by using the GB
approach over the GO/AI approach for the following reasons. The GO approxi-
mation neglects the effects of rays diffracted by the aperture edges at the open end
which can enter into the waveguide cavity; these effects (in addition to the effects
of interior cavity wall curvature) significantly diffuse the initially collimated GO
incident field as it propagates large distances into the cavity. Furthermore, the GO
field description fails at and near ray caustics; such ray caustics can occur if the
GO rays undergo reflections from portions of the interior cavity walls which are
concave (see Figures 3 and 4) or exhibit points of inflection. On the other hand,
the field of the GB’s launched from the aperture into the interior waveguide cavity
region as in Figure 6 includes the contribution of the aperture edge diffracted fields
which enter the cavity, and the GB description remains valid at ray caustics. It
also appears that one needs to launch less than 25 GB’s per square wavelength
in the aperture to accurately represent the interior fields over a sufficient distance
within the slowly varying waveguide cavity provided the aperture is large enough

to launch well collimated GB’s inside the cavity. As mentioned above, another
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Figure 6: Example of one typical Gaussian beam launched into an open-ended
cavity from the pth sub-aperture.

significant advantage of the GB’s which is not present in the GO/AI approach is
that if the density of the GB’s is appropriately increased to about 100 per square
wavelength in the aperture, then the GB’s become independent of the incident an-
gle over a sufficiently large range of angles, and therefore need to be tracked only
once within the interior. In contrast, the GO rays need to be tracked each time
the incident angle is changed. This advantage of the GB’s comes from the fact
that they can be launched as a phase-space like array which is sufficiently dense
to cover the entire angular range of interest. Thus, if the expansion in terms of
GB’s is selected to be independent of the incident angle, then only the initial GB
amplitudes change with the incident angle. Moreover, this suggests that not all
GB amplitudes are significant so that one can even pre-select the most strongly
excited GB’s, just as in the selective modal scheme mentioned earlier [13], to once
again further reduce the computational times. On the other hand, one finds that

the axial (real ray) tracking of the GB’s requires one to launch well focussed GB’s
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Figure 7: Rays launched from sub-apertures into a cavity using the GRE method.

whose spatially wide waists must fit well within the waveguide cavity. The spa-
tially wide GB’s sample a wide portion of the reflecting cavity walls and undergo
distortion at each reflection thus limiting their use to waveguide cavities which are
not long relative to their width.

An alternative ray method for analyzing the scattering by open-ended waveg-
dide cavities which will be referred to as the generalized ray expansion (GRE)
method, is also developed here to avoid the problems of beam distortion due to
successive reflections in the axial GB tracking approach. In the GRE, the rays are
launched into the cavity from each sub-aperture as in Figure 7; this is done in a
manner which is very similar to the launching of the GB’s from the sub-apertures
as shown earlier in Figure 6, but is different from that in the GO/AI or SBR ap-
proach shown in Figure 3. Thus, the rays launched in the GRE method implicitly
contain effects of waves diffracted into the cavity via the edges at the open end as
in the GB approach; also, each of the many rays launched from the sub-apertures

needs to be tracked only once independent of the incident angle, again as in the GB
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method. The GO ray tubes in the GRE can be made as narrow as is necessary,
unlike the GB’s, so that they can be traced (via the laws of GO) much farther
inside the waveguide cavity than the GB’s. This allows the GRE method to be ap-
plicable to cavity configurations of virtually unlimited depth and generality. The
limitation of the GRE method is that it uses the laws of GO to trace the ray tubes
within the cavity so errors can accumulate from the effects of ray caustics, creeping
waves and surface diffraction. Also, the GRE method like the GB and GO /AI (or
SBR) also does not include diffraction from interior discontinuities, such as from
the junctions between waveguide sections in the cavities of F igure 1, for example.
However, realistic cavity configurations have smooth, slowly varying walls so the
higher order diffraction effects are minimal and can be neglected.

In general, the termination within the cavity can be quite complex. It is
therefore convenient to characterize the termination in terms of a scattering ma-
trix which can be found separately via the method of moments (MM), or via some
approximation scheme (e.g., physical optics (PO) if appropriate), or by measure-
ments, etc. This scattering matrix provides the fields scattered by the termination
over some fictitious aperture plane in the neighborhood of the termination, when
a given field distribution is incident on this plane, but in the absence of the ter-
mination, after propagating into the cavity from the open end where it originates
due to the plane wave illumination. If the waveguide cavity region containing the
termination and its vicinity is separable, as it is assumed here, then the termina-
tion scattering matrix can be expressed in terms of the modes of that region. This
termination scattering information obtained separately from an analysis dictated
by only the shape of the waveguide cavity region containing the termination and
its vicinity, and by the termination itself, can be combined effectively via a gen-

eralized reciprocity principle with the information on the fields propagating from
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the open end into the waveguide cavity region (without the termination) obtained
by any appropriate approach (e.g., the hybrid modal, GO/AI (or SBR), GB or
GRE methods, etc.). This generalized reciprocity integral involves a reaction of
these two separate fields over the conveniently chosen fictitious plane near the ter-
mination. Such a generalized reciprocity (or reaction) integral formulation thus
allows one to systematically and independently study the effects of various ter-
minations and waveguide cavity shapes, respectively, on the overall scattering by
such open-ended waveguide cavities with complex terminations. It is noted once
again that the use of this generalized reciprocity result requires one to track the
fields from the open end to the fictitious termination plane and not back again to
the open end [30]; thereby further adding to the computational efficiency. This
method, referred to as the reciprocity integral (RI) method, is described in detail
in Appendix C.

The format of this report is as follows. The hybrid asymptotic-modal analysis
will be described in Chapter II, the GO/AI (SBR) method in Chapter III, the
GB method in Chapter IV and the GRE method in Chapter V. Numerical results
based on each of the methods will be included at the end of Chapters II through V,
respectively, and conclusions will be discussed in Chapter VI. Appendices A thru
D will describe the waveguide modes of 2-D parallel-plate and annular waveguides,
the aperture integration of GO ray-tubes, the reciprocity integral method, and
the sub-aperture expansion method in 2-D, respectively. The aspects of incidence
and scattering of interest in the present work are restricted primarily to the sector
0° < 8,6; < 60° where the incident and scattering directions 8; and 8, respectively,
are with respect to the axis of the waveguide cavity at the open end. Furthermore,
as mentioned earlier, the scattering from all external features except by the edges

at the open end of the cavities will be excluded in this report. Only the scattering
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by the edges at the open end and by the interior cavity termination are of main
concern here. Finally, an e/t time dependence for the EM fields will be assumed

and suppressed in the analyses to follow.
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CHAPTER 11

THE HYBRID ASYMPTOTIC MODAL METHOD

In the hybrid asymptotic modal method (henceforth referred to as simply
the hybrid modal method) for analyzing the EM scattering of an incident plane
wave by an open-ended waveguide cavity, sections of uniform waveguides are joined
together to build up a more general cavity configuration. The fields within these
uniform waveguide configurations are separable; i.e., the modes and the associated
modal rays for the waveguide sections can be described analytically in closed form
[5,6,7). Some typical open cavities which can be built up in this manner are shown
in Figure 1. The multiple wave interactions between the junctions formed by
connecting the different waveguide sections, the open end and the termination,
respectively, are handled using a self-consistent multiple scattering matrix (MSM)
method, sometimes referred to as the generalized scattering matrix method. In this
method the scattering by isolated scattering centers (e.g., the open end, junctions
and the termination) is represented in terms of transmission and reflection matrices
which the MSM ties together self-consistently to include all possible interactions
between the scattering centers.

Because realistic cavity geometries can be large in terms of wavelength, there
are typically many propagating waveguide modes which can be supported within
the cavity (the number increases exponentially with the cross-sectional area). This

makes it very inefficient to find the elements of the individual scattering matrices
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using numerical methods such as mode matching or integral equation methods.
However, these large waveguide structures do lend themselves well to high fre-
quency asymptotic methods. The hybrid approach to the modal method finds the
elements of the individual scattering matrices directly and efficiently using high
frequency asymptotic methods such as GTD [1], ECM (3,10] and PTD [3,11,12].

As implied earlier, the hybrid modal method is limited to cavities that can
be “built up” from joining sections of uniform waveguides for which the modal
fields are known. Also, these waveguide sections are most often perfectly conduct-
ing because cumbersome numerical procedures are usually required to solve the
complex eigenfunction equations for the modes of waveguides whose walls are non-
perfectly conducting [16]. It is possible to use perturbation techniques as in [7]
where it is assumed that the walls can be modeled by impedance surfaces which
are nearly perfectly conducting, but this unfortunately has limited practicality.
Finally, because the number of modes which must be included increases exponen-
tially with frequency, even the hybrid modal method becomes cumbersome and
inefficient for larger perfectly conducting cavities. The main advantage of using
this hybrid modal method, aside from being efficient compared with numerical
methods, is that it can give highly accurate results when applied properly. This
allows the method to be very useful in verifying more approximate methods that
can handle general cavity geometries and surface characteristics, such as the meth-
ods described in the next three chapters. Often there is no other reasonable means
of verification other than direct measurement.

In this chapter, the MSM will be formulated in terms of the individual scat-
tering matrices of the open end and termination of a simple open-ended cavity
made up of a single waveguide section. It will be discussed how a simple extension

of the MSM of the single section cavity can be applied to cavities made up of mul-
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Figure 8: Open-ended waveguide cavity made up of a single waveguide section
illuminated by a plane wave.

tiple waveguide sections, such as in Figure 1. High frequency asymptotic methods
will then be used to find the elements of the individual scattering matrices in an

efficient way. Finally, some numerical results from [5]-[9] will be presented.

2.1 Self-Consistent Multiple Scattering Matrix Formulation

2.1.1 Formulation for a cavity with a single waveguide section.

The MSM will be derived in this section to describe the scattering by an
open-ended waveguide cavity made up of a single terminated waveguide section
illuminated by an incident EM plane wave in free space, as shown in Figure 8.
The electric and magnetic fields F' and HY, respectively, of this plane wave can
be written as

1

Bo= (64h+d'ay)e T (2.1)

A = z;'%'x EY, (2.2)
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where

k= kit (2.3)
¢ = k'x @ (2.4)
k = free space wavenumber (27/)),

k* = direction of the incident plane wave,

Zo, = plane wave impedance in free space.

In terms of the incidence angles,
k' = —#sin6’ cos¢’ — §sin 6 sing® — 2 cos 6 (2.5)
where

¢, ¢i = elevation and azimuth angles of incident plane wave.

The scattered field due to this plane wave incident field can be written as a

sum of its rectangular vector components as
E* = &Ej+jyEj+ :E;. (2.6)

The multiple scattering matrix [S] for this problem relates the scattered field com-

ponents of (2.6) to the incident field components of (2.1) and is defined by

B |
Aj
o = 18 (2.7)
Ag
E3

It is clear from (2.7) that [S] has three rows and two columns (i.e., it is of order

3 x2).
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Referring again to Figure 8, the total forward or backward (£7) propagating
fields inside the waveguide section, which include all the effects of multiple inter-
actions between the open end and the termination, can be written as a sum of

waveguide modes:

N .
(BS,BE) = 3 4% (&, hE) TP (28)
n=1
where
eX R = nth waveguide modal fields,
Bn = propagation constant of the nt" mode,
n = axial coordinate of the waveguide,
A,:E = modal expansion coeflicients,
N = number of included modes.

These waveguide modal fields are complete orthogonal eigenfunction solutions to
the vector wave equation, with appropriate boundary conditions, for a separable
waveguide geometry of infinite length. The open-ended cavities of this analysis
are made up of finite length sections of these waveguides. The exact closed-form
expressions for the modal fields of some simple waveguide geometries and the
method of derivation can be found in {31]. The expressions for the modal fields
of a two-dimensional (2-D) parallel-plate waveguide and a 2-D annular (curved)
waveguide are derived in Appendix A of this report as examples.

It is noted that a waveguide supports a finite number of propagating modes
and an infinite number of evanescent modes; so if all the modes are included, N
is infinite. However, because the evanescent modes die out very quickly as they
propagate down the waveguide (fBy is pure imaginary for evanescent modes) and

the higher the mode number the faster they decay, the summation of (2.8) is
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truncated at some value N which includes all the propagating modes and only the
few significant evanescent modes. Usually, the effect of evanescent modes is so small
that they can be neglected completely. This occurs for waveguide sections which
have a large number of propagating modes or are long enough for the lowest order
evanescent modes to decay to a sufficiently low level. The sizes of the waveguides
of interest to this study are usually large enough so that the evanescent modes can
be neglected.

The components of the field scattered by the cavity, including only the scat-

tering by the interior of the cavity and the rim at the open end, can be written

as
E} .
z 45 s
5 = Bul| 7 +512]47] (2.9)
44
E;

where [S11] is the scattering matrix which relates the incident field components to
the components of the field scattered by the edges or the rim at the open end of
the cavity and is of order 3 x 2. [A*] is a column matrix of order N containing the
coefficients A7 of the +17 propagating modes incident on the open end from within
the cavity, and [S)3] is the transmission type scattering matrix of order 3 x N
which relates these modal coeflicients to the components of the field scattered by
the interior of the waveguide cavity. These two scattering matrices are illustrated in
Figure 9. 7 is an arbitrary axial coordinate for the waveguide under consideration
and is shown in Figure 16.

The +17 propagating modal fields incident on the open end from within the
waveguide with coefficients A} are due to —7 propagating modal fields with coeffi-
cients A, which have reflected from the termination of the cavity. Therefore, [A™]

can be related to [A7] via a termination modal reflection matrix denoted by [Sy],
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Figure 9: Open end of a waveguide cavity illustrating the scattering matrices

(S11] and [S12)-

with appropriate phase delays which account for the modal propagation down and

back the length of the waveguide section:
[at) = [PlSOI[PYA")- (2.10)

[P] is a diagonal matrix of order N x N which describes the phase translation of

a modal field down the length of the waveguide and is given by

0 0
P] = | 0 el 0 (2.11)
0 0
where
| = length of the waveguide section.

Snl is a reflection type scattering matrix of order N x N which relates coefficients
r g
of the —7# propagating modal fields incident on the termination to coefficients of

the +7 propagating reflected modal fields. [P] and [Sp] are illustrated in Figure
10.
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Figure 10: Open-ended waveguide cavity illustrating the matrices [P] and [Sp].

The —17 propagating modal coefficients 4, can found in terms of the coupling
of the incident plane wave into waveguide modes in addition to the reflection of

modes incident on the open end from within the cavity. This is expressed as
Ai
— (] +
[A7] = [Sa]| 7 | +[Sz)l4”] (2.12)
Al
¢
where [S3;] is the transmission type scattering matrix of order N x 2 which relates
the components of the incident plane wave to the coefficients of the ~1) propagating
modes, and [S22] is the reflection type scattering matrix of order N x N which
relates the coefficients of the +# propagating modes incident on the open end from
within the cavity to the coefficients of the —7# propagating modes. [S21] and [Sqs]
are illustrated in Figure 11.
Equations (2.10) and (2.12) can be solved for [A1] which can then be sub-
stituted into (2.9) to give the components of the scattered field in terms of the

components of the incident plane wave; the complete scattering matrix [S] of (2.7)
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Figure 11: Open end of a waveguide cavity illustrating the scattering matrices

[S21] and [S2a]-

will then be evident. Combining (2.10) and (2.12) yields

Ai
(1) - (S2IPUSTIP) A7) = ISl | ¢ (213)
¢
where
[I] = identity matrix of order N x NV.
Using (2.13) in (2.10) gives
; gy |
[A*] = [P][ST)[P] (1] ~ (S22l [PYSTI[P) ™" [S21] 4 (2.14)
é
and substituting this into (2.9) yields
E; _
-1 Ag
By | = {(Su+SulPISTIPI(I] - [S2][PSr][P]) (S21]} i
E: ¢
(2.15)

25



From (2.15) the complete MSM for the open-ended waveguide cavity of Figure 8

can be extracted as

[S1 = [Sul+ [Sw2llPISKI[P] (1] - [S22](P)[ST](P]) " [Saa).

(2.16)

Notice that this matrix is composed of two terms — the scattering matrix of the
rim at the open end and a product of scattering matrices which together give the
scattering matrix of the interior of the cavity. Also notice that if the multiple
interactions between the open end and the termination can be neglected, i.e., if
the elements of [S3;] are assumed to be zero, then the inverted term of (2.16)

disappears and the scattering matrix is approximated by
[S] = [Su] + [S12][P][ST][P][S21)- (2.17)

This can be interpreted physically as follows: reading from right to left, the ma-
trix [S21] couples the components of the incident plane wave field into waveguide
modes. [P] propagates the modes down the guide to the termination where they
are reflected via [Sy]. They are then propagated again by [P] back to the open
end where they are coupled to the components of the scattered field in the exterior
region via [S12]. The scattering by the rim at the open end is then added using
[S11] to give the total field scattered by the open-ended cavity. Equation (2.17) is
often used because the modal reflection by the open end ([S33]) is usually negligible
compared with the reflection by the termination ([Sr]). This eliminates the need

to invert a rather large matrix of order N x N, as in (2.16).

2.1.2 Extension to cavities made up of more than one waveguide sec-
tion.

Figure 12 shows an open-ended cavity made up of two waveguide sections

with a termination. The MSM can be easily extended to this cavity by simply
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Figure 12: Open-ended cavity made up of two waveguide sections with a
termination.

replacing [Sp] in (2.16) of the single section case above, with an effective MSM
which describes the multiple interactions between the termination and the junction

between the two waveguide sections. This new reflection matrix is given by

[Sr] = [Sid] + [S12[P](STI[P] ([I']—[S'zz]{P'][SH[P'])—l[551]-
(2.18)

This is exactly analogous to (2.16) (and can be derived the same way) except
that the scattering matrices of the junction between the sections, [514)s [S,] and
[S%;), now relate the coefficients of the modal fields on either side of the junction
rather than relating the modal coefficients with the components of the incident
and scattered fields of the exterior region, as is done for the open end. Figure
12 illustrates the individual scattering matrices associated with the two-section
cavity.

In general, the two waveguide sections will have sets of waveguide modes dif-
fering in structure and number. Referring to Figure 12, let there be M included

modes in the second section (the waveguide to the right) and once again there are
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N included modes in the first section (the waveguide to the left). Then the trans-
mission type scattering matrix [S},] is of order M x N and relates the coefficients
of the modal field incident on the junction from the first section to the coefficients
of the modal fields coupled into the second section and [S},], which is of order
N x M, does the reverse. [S},] is of order N x N and relates the coefficients of
the modal field incident on the junction from the first section to the coefficients
of the modal fields reflected by the junction (note that this does not include the
scattering by anything beyond the junction, which is accounted for using (2.18)).
Likewise, [S5,] is of order M x M and relates the coefficients of the modal field
incident on the junction from the second section to the coefficients of the field
reflected by the junction. The new termination modal reflection matrix [.S'i‘], the
propagation matrix of the second section [P'] and the identity matrix [I'] in (2.18)
are all of order M x M.

The junction reflection type scattering matrices [$};] and [S%,] are often neg-
ligible compared with the termination scattering matrix [Sp] so they can be ex-
cluded, like [S33] was excluded in the last section. After removing these three
matrices, the total self-consistent scattering matrix of the two-section open-ended

cavity can be approximated similar to (2.17) as
18] = [Sul + [S12llPS12[P)[SE][P')[S21)[P][S21] (2.19)

which can be physically interpreted the same way as (2.17) was in the last section.

It should now be clear that another waveguide section could be added by
simply replacing [S{«] with the effective MSM of this additional section, exactly
the same way as was done for the second section. This process could be repeated
indefinitely to handle cavities made up of any number of waveguide sections. How-

ever, if all the multiple interactions are to be included, i.e., the junction reflection
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matrices are not neglected, the number of necessary matrix inversions increases
exponentially, making the method more and more inefficient. Therefore, it is de-
sirable to exclude the junction reflection matrices whenever possible. Luckily, for
the larger cavity geometries with smooth junctions encountered in practice, the
approximation is quite adequate. For smaller waveguide cavities, the effects of
the junction reflection matrices may become more important so it is suggested
that they be included if the number of waveguide modes is not too large to be a

limitation.

2.2 Development of the Elements of the Scattering Matrices in the
Multiple Scattering Matrix (MSM) Method

In this section the individual scattering matrices associated with the open end,

junctions and termination will be found using high-frequency asymptotic methods.

In particular, the methods used are GTD, UTD, ECM and PTD [1]-[3], [10]-[12].

The equations presented here are for the general case; more explicit expressions

for selected waveguide geometries can be found in [5]-[9].

2.2.1 The scattering matrix of the rim at the open end [Sy;].

[S11], the scattering matrix which relates the components of the plane wave

incident on the open end to the components of the fields scattered by the rim is

defined by
E}r ;
Ey | = (Sul| "’ (2.20)
Al
st ¢
EZ
where
EJ,E),E;" = rectangular components of the electric field scattered by
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Figure 13: Geometry for finding the scattering matrix [Sy1].

the rim,
Af,, Ag = components of the electric field of the plane wave

incident on the open end.

It is clear from (2.20) that [S11] is of order 3 x 2 (i.e., it has two rows and three
columns), as mentioned earlier. The geometry for finding this scattering matrix is
a semi-infinite open-ended waveguide, as shown in Figure 13.

Using the equivalent current method (ECM) the scattered field is assumed to
be produced by equivalent electric and magnetic currents that replace the rim and
radiate in free space. The scattered field can then be written as an integral over

these currents and is given by

Bro= o [ [Rx RxLg(l') + Yok x M (l']iﬁdl’ 2.21
= 47|- rim X X eq + o X eq ) R ( . )
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Figure 14: Equivalent currents which replace the rim at the open end of the

waveguide.
where
R = vector from a point on the rim to the receiver position,
Y, = free space admittance (= z; 1,
! = coordinate of points on the rim.

The geometry is shown in Figure 14.
The equivalent currents I_;q and Meq are excited by the incident plane and are
given by (3]
. Ir. Ei(rim) 8,
Iy = — Ds(¥,v'; Bo, B, By
eq( ) ZO\/W 3(1/’ '(l’ ,Boﬂa) ._

i H ('rzm)

Meq(l,) = YW d d’ /BO)Hoa)\/_l' (223)

where D, and D}, are the soft and hard GTD diffraction coeflicients, respectively,

(2.22)
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B = B, ON KELLER CONE

Figure 15: Geometry of the wedge diffraction coeflicient showing the angles 3,

B, ¥, ¢' and a.

given by [1]
e"j% sin T
D ’; Bo, = .
Y Y ey Ay

1 + 1
] !
cosg—cosu cos%—cos%ﬂ

4

(2.24)

with the angles defined in Figure 15. By substituting (2.24) into (2.22) and (2.23)
and then (2.23) and (2.24) into (2.21) and integrating, one obtains the field scat-
tered by the rim at the open end in terms of the incident plane wave. From this
result, the elements of [S13] can then be easily identified and extracted.

It is noted that the GTD diffraction coeflicients of (2.24) are non-uniform and
therefore become singular at the shadow boundaries formed by the incident and
reflected ray-optical fields and the wedge. However, this usually only occurs for
cases where the incident plane wave comes close to grazing the aperture; neverthe-
less, this range of angles is not of interest as indicated previously. Furthermore,
if the incident plane wave grazes the aperture, very little energy will be coupled

into the waveguide cavity; also the specular contribution from the external surface
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Figure 16: Reflection of modal fields from the open end of a semi-infinite
open-ended waveguide.

of the cavity near the aperture can become important for this case and could be

accounted for via the UTD [2,3].

2.2.2 The reflection modal scattering matrices of the open end [S3;]
and junctions [S;], [S,]-

Figure 16 shows the geometry used for finding [$32], the reflection type scat-
tering matrix which relates the coefficients of the modal field incident on the open
end from within a semi-infinite open-ended waveguide to the coefficients of the
reflected modal field. Let these incident or reflected waveguide modal fields be
written as a sum of +7 and —# propagating modes similarly to (2.8) as

N :
(B, HE) = Y Cx (e, hE) eFobnm, (2.25)
n=1

[S22] is then defined by
(€] = [SallC] (2.26)

and is of order N x N, as mentioned earlier.
The ECM will again be used to find the elements of [S23] by replacing the open

end with equivalent magnetic line and dipole currents which coincide with the rim
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Figure 17: Equivalent problem with the open end replaced by magnetic current
sources radiating on the walls of an infinite waveguide.

at the open end. These currents are then allowed to radiate on the walls inside
the waveguide which now extends to infinity in both directions as illustrated in
Figure 17. It is noted that electric currents are not used here because they would
not radiate on the surface of the perfectly conducting waveguide walls. Also note
that this is not the same case as in the last section where the equivalent currents
were allowed to radiate in free space.

The radiating magnetic currents will excite modes inside the waveguide prop-
agating in both directions away from the current sources. The excitation of waveg-
uide modes can be found for any given current source distribution using the equa-

tion found in [31}]:

1 o ix o g
O = e i [ J (T R w) e,

(2.27)

The integration in (2.27) is over the volume containing the current sources. The

waveguide modal fields have been decomposed into their transverse and axial com-
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ponents in (2.27) and can be written as

€p = €nt T énn (2'28)
h% = :i:ibnt + ilnn (2'29)
where

at = transverse components of the electric and magnetic fields,

>

€nt,y

h

respectively, of the n*" waveguide mode,

-

ényy hny = axial (77) components of the electric and magnetic fields,

h

respectively, of the nt" waveguide mode.

J [s ént X Bt - 7dS is a term which normalizes the power of the nt® mode and §
is an arbitrary cross-section inside the waveguide. To find the coefficients of the
modes reflected by the open end, the volume integral in (2.27) reduces to a line

integral and the coefficients are given by (setting n = 0 at the open end)

1 7 — —
O = e [ R (M) + Mg(U)] 2.30
" 2f fsént X hnt - ndS Jrim n [ (1) d( )] ( )
where
My(l"), My(I') = equivalent magnetic line and dipole sources, respectively,

replacing the rim at the open end

! = coordinate of points along the rim.

The mnt? element of the [Sy3] is simply the coefficient of the nth reflected mode
due to a single m*" mode incident on the open end of the waveguide and can be

written using (2.30) as

1
2 Jsént % ilnt - fidS Jrim

[S22]mn Rt - [Mym(I) + Mgm(l')) dl

(2.31)

35



Figure 18: Ray-optical fields of the mth mode in a parallel-plate waveguide.

where

My, (I, Mg (') = equivalent magnetic line and dipole sources,

h

respectively, due to the mt"® mode incident on the

open end.

So far we have the elements of [S32] given in terms of the equivalent magnetic
current sources due to the mt" incident mode, as in (2.31). To find the elements
of [Sg2], we must know the excitation of these sources by an incident waveguide
mode. This is done by decomposing the modal field into its high-frequency ray-
optical equivalent. For example, the modal fields of a 2-D parallel-plate waveguide
are expressed in terms of sine and cosine functions. When these are written in
their exponential (Euler) form, it becomes clear that the modes in a parallel-plate
waveguide are simply crossing plane waves which propagate at a characteristic
mode angle 6,,, as shown in Figure 18. The modal fields and their ray-optical
equivalents are derived for the parallel-plate and 2-D annular waveguides in Ap-
pendix A.

In general, it is found that in the vicinity of a waveguide wall, a modal field

can be expressed as a sum of ray-optical fields which propagate toward and away
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from the wall. For a point near a wall, this is written for the m* mode as
+ 4\ Fj S ik +
(c£,h%) ¥ = 3 (L, i hEp:) + (g hipr)] (2.32)
p=1
where
( mp,l,h?,;p, ) = pth ray-optical fields of the mth mode propagating towards
the waveguide wall,
(emp r hfw’ ) = pth ray-optical fields of the m'" mode propagating away
from the waveguide wall,
P,, = number of ray-optical fields of the mt* mode.

These ray-optical fields can now be used to find the excitation of the equivalent
magnetic current sources of the ECM, again using the Keller-type GTD wedge
diffraction coefficient of (2.24). The only difference is that for this case the incident
field is the ray-optical form of the incident modal field instead of a plane wave, and
the equivalent currents radiate on the inner surface of a waveguide wall instead of
in free space, as was done in Section 2.3.1. Physically, the ray-optical fields of the
waveguide mode are incident on the rim at the open end and diffract, radiating
energy into the exterior region and also back into the waveguide region. This
scattered field is represented as being produced by equivalent magnetic line and
dipole currents along the rim. The exterior region is not of interest in finding [S22],
so the original semi-infinite geometry is replaced in this equivalence by an extension
of the waveguide past the open end to infinity, and the equivalent magnetic currents
located where the rim was in the original configuration now radiate inside, exciting

waveguide modes in both directions, via (2.30) for this case.

th

The equivalent magnetic current sources of (2.31) due to the m"™ incident
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mode and which are used to excite the n*? reflected mode are given by [5]

oy - i Pf 1 \/ b ) Dal¥p YuaiBnp B,
24/sin Bmyp sin Bnp
(2.33)
Mym(l') = - Z ( i ) DelYmprVogi g Pepy
2| sin Pap| \/sm Bmp sin Bnp
: [n\/ 1 (I kmp)z 7 % & (I' - kmp) cos ¢np] (2.34)
where
dv:np, Bmp = wedge diffraction angles associated with the mp*h ray-optical
incident modal field,
Ynp,Bnp = wedge diffraction angles associated with the npth ray-optical
reflected modal field,
fi = waveguide axial direction,
A = unit vector normal to the waveguide walls,
l::mp = direction of propagation of the mpth incident ray-optical field.

The GTD wedge diffraction coefficients D, j, are given by (2.24) and the associated
angles are defined in Figure 15. Note that the expressions for the equivalent
magnetic current sources depend on the modal ray angles of the nth reflected
mode ¥np and Bnp. This is because the equivalent currents are not isotropic, i.e.,
they radiate with different strength in different directions to reproduce the correct
scattered field. Therefore, to be consistent with reciprocity, the radiation by the
equivalent currents is evaluated in the direction of the modal rays of the reflected
modal field.

The elements of [S22] can now be found by substituting (2.33) and (2.34)

into (2.31) and integrating. The junction scattering matrices S!'.] and [S},] are
g g g 11 22
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found in exactly the same way as [S22] except that the rim at the open end is
replaced by the junction between waveguide sections. Also, for the case of [S'll],
the incident modes now propagate in the —7 direction and the reflected modes
now propagate in the +# direction. The expressions for the elements of these two
scattering matrices will therefore not be repeated here.

It has been found that if the junction between two waveguide sections is fairly
smooth, i.e., their is no slope discontinuity, the junction reflection matrices can
most often be neglected [6,7] (all elements are assumed to be zero). In addition, if
the reflection matrix of the open end [S22] is negligible compared to the termination
reflection matrix [Sp] (or the elements of both are small), [S22] can also be excluded.
These two approximations are usually valid for most open-ended waveguide cavity
configurations of interest and greatly simplify the analysis. A close examination
of the scattering centers of a particular waveguide cavity and their higher order
interactions should suggest what approximations are reasonable.

It should be mentioned that in some separable waveguide geometries there
exist modes which have regions where the fields can not be expressed ray-optically
in closed form. This occurs in the transition zones between regions of real ray-
optical fields and evanescent fields, or in regions near caustics. The evanescent
fields can be expressed as ray-optical fields which have been analytically extended
to complex space and can therefore be handled by an analytic extension of the
GTD wedge diffraction coefficient. However, this is usually not necessary because
these fields are small due to their evanescent nature and can be neglected. But the
fields in the transition region are sometimes not negligible and should be included
using some other method, such as a complex plane wave spectral expansion of the
modal fields [8]. The annular waveguide of Appendix A propagates such a mode,

called a whispering gallery mode, which is ray-optic in the region near the outer
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Figure 19: Open-ended semi-infinite waveguide illuminated by a plane wave
which couples into waveguide modes.

wall, evanescent in the region near the inner wall, and has a transition (caustic)
region between the two.

2.2.3 The transmission scattering matrices of the open end [S1; and
[S21], and junctions [S],] and [S3,].

Figure 19 shows the geometry for finding [S3;], the transmission type scatter-
ing matrix which relates the components of the plane wave incident on the open
end of a semi-infinite waveguide to the coefficients of the coupled modal fields
propagating away from the open end. As before, these coupled modal fields can

be written as a sum of —7 propagating waveguide modes as
- - N ~ .
(Bp,Hgy) = 3 Cn (én,hy) e?Pem. (2.35)
n=1

[S21] is then defined by
;
(€71 = [Sal| (2.36)
Ag
and is of order N x 2, as mentioned earlier, and [C'"] is a column matrix of order

N.
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The coefficients C,; of the coupled modal field are found again by using the
modal excitation Equation of (2.27). The currents used in the integral of (2.27)
are the equivalent currents of the physical theory of diffraction (PTD) {3,11,12]
which replace the effects of the open end of the semi-infinite waveguide. These
equivalent currents are, of course, based on the fields of the incident plane wave in
the open end. The modal coefficients can be written for this case as (setting 7 = 0

in the open end)
1 g A —
c;. = - // é+'J—h+-M ds
i 2[ Jsént X hnt - 0dS [ open end ( L n -’)

+ [ k(M4 1Y) dl’] . (2.37)

rm

The first integral in (2.37) is an integration over the physical optics (PO) currents

on the surface defined by the open end given simply by

Jo = axH (2.38)
M, = E'x#a (2.39)
where
7 = unit surface vector of the open end pointing into the

waveguide region.

The second integral in (2.37) is a line integration over the Ufimtsev equivalent
magnetic line and dipole edge sources {11,12] coinciding with the rim at the open
end. Figure 20 shows the equivalent geometry with the open end replaced by
surface and line current sources in an infinite waveguide region.

Again using the ECM, the Ufimtsev magnetic current sources are given simi-

larly to (2.33) and (2.34) by [6]

Pm < i u ! .
Mp = - Zx 1 \/j.z (-1 Dy(¥, ¥npi B, Bnp) (2.40)
p:

2,/sin 3 sin Bnp
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Figure 20: Equivalent surface and line sources replacing the open end of the
semi-infinite waveguide of Figure 19.

- PmoBr o DR, Ynp; B, Bn
MY = qu:jl = (E.1) 2l51nfﬁﬁpl%l’ (2.41)
where
;" n = Ufimtsev’s wedge diffraction coeflicients,
¥',8 = wedge diffraction angles associated with the incident plane
wave,
Ynp,Bnp = wedge diffraction angles associated with the p'* modal ray of

the nth coupled mode
' = unit vector along the rim

7 = waveguide axial direction.

The angles associated with the PTD wedge diffraction coeflicient are defined in Fig-
ure 15. After substituting Equations (2.38) thru (2.41) into (2.37) and integrating,
the elements of [S3]] can easily be identified and extracted.

The Ufimtsev equivalent currents of (2.40) and (2.41) are corrections to the

PO currents of (2.38) and (2.39) and they may be neglected for most open-ended
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waveguide geometries of interest leading to the Kirchhoff approximation which
simplifies the analysis considerably. Cases where the Ufimtsev currents should be
included are for waveguides which do not have a large cross-section (in wavelength)
and for cases of very steep incidence angles (i.e., very far off axis or near grazing).

As might be expected, there is a simple relationship between [S12] and [Sa1]
which eliminates the need to calculate the elements of [S}3] independently. This

relationship is derived via reciprocity and is given by [5,6]
S12]7 = -2 [/ /:9 ént X hnt - 7dS| [S21] (2.42)
where

[//:9 ént X Bt - ﬁdS] = diagonal matrix of order N x N,

[Slg]T = transpose of [S12].

The transmission type scattering matrix [S5,] which relates the coefficients
of the modal field incident on a junction between two semi-infinite waveguides to
the coefficients of the modal field coupled through the junction into the second
waveguide region, is found in an analogous manner to [S21]. Figure 21 shows the
geoinetry.

Let the incident modal field of the left waveguide be given by
— -y ¢ N -~ .
(B, Hi) = 3 Cx (&, k) e (2.43)
n=1
and let the transmitted modal field of the right waveguide be given by

At it A 1~ 1=\ iBmn

(B, H) = Y D, (Bt ) 7Pm (2.44)

m=1

where the primed quantities indicate they are of the modal fields of the waveguide

on the right. Note that in general the modal fields of the two waveguides are
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Figure 21: Junction between two semi-infinite waveguide sections with an
incident and transmitted modal field.

different and there are a different number of included modes. [$},] is then defined

by
[D7] = [$u)lCT] (2.45)

and is of order M x N, as mentioned earlier. Similar to (2.37), the nm* element

of [S5,] is simply the coefficient of the mth transmitted mode due to a single nth

mode incident on the junction and is given by

i = g TGS v (65 T = B Hun) 5
i fe doe hot - (M}, + M) dl'] (2.46)
where
Jon = A xhy (2.47)
My = é5 x# (2.48)

unit surface normal of junction pointing into the waveguide

3>
Il

on the right,
Py 1

Mlltz = "'l,z \/ ;p,

D“(¢np, Ymp; Bup, Bmp)

2,/sin fBnp sin Binp

(2.49)
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S Pn [ox - D¥(¢; ; Bnp
MY, = 7?2\/87r (€npyi - 7) Vg g g Pry) (2.50)

dn p=1 ik 2| sin Pmp| \/an Brpsin Bmp
and
1/);,1,,,3"1, = wedge diffraction angles associated with the npth ray-optical
incident modal field,
Ympy Pmp = wedge diffraction angles associated with the mpth ray-optical

transmitted modal field,
I' = unit vector along the edge of the junction,
7 = waveguide axial direction for the waveguide on the left,

— waveguide axial direction for the waveguide on the right.

The angles associated with the PTD wedge diffraction coeflicients D;" , are defined
in Figure 15. Equations (2.47) thru (2.50) can now be substituted into (2.46) and
integrated to give the elements of (S,]. Once again it is noted that the radiation
from the Ufimtsev equivalent currents of (2.49) and (2.50) does not contribute
significantly and may therefore be neglected (as in the Kirchhoff approximation)
especially for junctions between waveguide sections which are smooth and contin-
uous and for large waveguide cross-sections. However, the Ufimtsev current con-
tributions become more important for smaller waveguides and for junctions which
are highly discontinuous or abrupt, and so they should therefore be included for
such cases.

The transmission type scattering matrix [S}s] which is defined by
[C*] = [SplDY) (2:51)

and is of order N x M is found in exactly the same way as [Sj;] except that

the incident modal field is from the waveguide on the right in Figure 21 and the
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Figure 22: Termination geometry for finding [ST].

transmitted field propagates in the +7 direction in the waveguide on the left.
Therefore, the expressions for the elements of [S}5] will not be repeated here.
Although there does not appear to be a simple reciprocal relationship between
[S),] and [S%,] for the general case as might be expected, there often is such a
relationship for some specific cases. For example, in [7] it is shown that these
matrices are transposes of each other for the case of a junction between a parallel-

plate and annular waveguide.

2.2.4 The termination scattering matrix [Sr].

The reflection type termination scattering matrix [Sy] relates the coeflicients
of the modal field incident on the termination of the waveguide cavity to the
coefficients of the reflected modal field. The geometry is shown in Figure 22. Let

the incident modal field be given by
N

(Es Hy) Cr (é7,hy ) P07 (2.52)

n=1



and the reflected modal field by
(Bf H2Y) = Y of (&, hif) e77Pn. (2.53)
(Sp) is then defined by
[c*] = [SrllCT] (2.54)

and is of order N x N as mentioned earlier.

For simple terminations, such as a perfectly conducting or impedance surface
which is everywhere transverse to the axial coordinate 7, it is a straightforward
task to find [Sp] by enforcing boundary conditions on the termination surface.
For these two cases, it is easy to show that [Sp] is always diagonal using the
orthogonality property of the modes and conservation of power. In other words,
the nt? incident mode reflects only into the nth reflected mode. For a perfectly
conducting termination and the mode conventions used here, [(Sp] = —[1], the
negative of the identity matrix of order N x NV. This is easy to see by requiring
that the tangential electric field vanishes on the termination surface, and using the
modal decomposition of (2.28).

For an impedance surface at the termination, the ratio of the tangential elec-

tric and magnetic fields is defined by

Eq
— Z 2.55
= (255)
where
Z, = equivalent surface impedance

It is assumed that the vector directions of the tangential electric and magnetic

fields are orthogonal. This is true if the waveguide modes are separated into

47



transverse-to-n electric (T'Ey) and magnetic (TMy) categories. For T'E, modes
the axial electric field éy,, is zero, and for T My modes the axial magnetic field flm,
is zero. Furthermore, it can be shown that if the waveguide modes are separated
into T'Ey and T My categories, then the transverse electric and magnetic fields of
any given mode have the same functional form and are related by a constant, as
well as being orthogonal.

In terms of the n'® incident and reflected modes, using (2.28) and (2.29),

(2.55) can be written as

ént + [SI‘]nn €nt

Z 2.56
~hnt + [ST)nnhnt ’ (2.56)
where
ent;hnt = scalar portions of é,; and iznt, respectively,
[Stlnn = n?h diagonal element of [St]-

Solving (2.56) gives the elements of [Sp] for the impedance termination as

%"—,’i—ﬂlﬁm : form=n
sfipnt—€nt

0 : for m # n.

[Srlma = (2.57)

It is noted that A, and e,¢ are functions of the transverse coordinates of the waveg-
uide, which would suggest that the elements of (2.57) are not constant. However,
as mentioned above, it can be shown that hy; and e, always have the same func-
tional form, which will cancel itself in (2.57), provided the waveguide modes are
divided into T'E;; and T'M,; categories. Also, it is clear from (2.57) that for a per-
fectly conducting termination (Z, = 0), [St] is the negative of the identity matrix,
as expected.

For more complicated terminations it is not nearly so easy to find [Sp|. It is
necessary to resort to other methods such as high-frequency asymptotic approxi-

mations and the method of moments. In [5], the reflection matrix for planar blade
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structures with concentric conical or hemispherical hubs terminating a circular
waveguide was found approximately using physical optics (PO). The termination
was replaced with equivalent PO currents due to an incident mode and these cur-
rents were then allowed to radiate inside the waveguide, exciting reflected modes.
Also in [5], a termination which was an open-ended circular waveguide was also
analyzed. This reflection matrix was found in the same way as [S99] was found
earlier in Section 2.3.2 of this chapter using the hybrid modal method. In [8],
the reflection matrix for some simple 2-D waveguide terminations was found using
the method of moments. In this method, the termination is replaced with un-
known surface currents excited by an incident mode inside the waveguide. These
unknown currents are solved for using the method of moments, adapted to the inte-
rior waveguide problem. These currents then radiate inside the waveguide exciting
reflected modes.

Currently, research is under way at The Ohio State University ElectroScience
Laboratory to find a means of obtaining [ST] experimentally so that terminations of
arbitrary complexity could be coupled to the open-ended waveguide. This would
be a very useful tool because many realistic terminations are of such size and

complexity that they are nearly impossible to model using analytic techniques.

2.3 Numerical Results and Discussion of the Hybrid Modal Method

In this section some numerical results obtained using the hybrid asymptotic
modal method will be presented and in some cases will be compared with mea-
surement. All of the results of this section have appeared in previous reports and
publications, and the appropriate references will be cited. Because of its accu-
racy, the hybrid modal method will be used again in later chapters as a reference

solution for comparison against more approximate methods.
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In [5], perfectly conducting, single section rectangular and circular open-ended
waveguide cavities with cone/hub and disk/blade terminations were analyzed using
the methods of this chapter as indicated earlier. The modal termination reflection
matrix [Sp] was obtained by replacing the conducting terminations with their phys-
ical optics (PO) currents due to an incident mode, and then finding the excitation
of the reflected modes radiated by these currents inside an equivalent waveguide of
infinite extent. Figure 23 shows a typical backscatter (RCS) vs. aspect angle result
from [5], compared with a measurement performed in the indoor compact range
at The Ohio State University ElectroScience Laboratory (OSU-ESL). Figure 24
shows a typical RCS vs. frequency result from [5], compared with a measurement
from OSU-ESL. It was found that the calculations agreed well with the measure-
ments and that the terminations used did not drastically change the overall pattern
features when compared to a simple planar “short circuit” termination, for the rel-
atively small guide cross-sections considered. Also, as Figure 24 indicates, the
measured data from such cavities is very sensitive to frequency. This suggests that
imperfections in the dimensions of the model and its alignment in the compact
range could significantly affect the accuracy of the measurement when compared
with calculations based on a perfect geometry.

Perfectly conducting open-ended waveguide cavities made up of more than one
waveguide section were discussed in [6], with emphasis placed on modal reflection
from and transmission through the junctions between waveguide sections and the
open end. A more detailed presentation of modal rays for some common uniform
waveguide geometries is also found in [6], along with a derivation of the reciprocity
relationship between [S13] and [S3;]. Figure 25 shows some typical RCS vs. aspect
angle results and Figure 26 shows a typical RCS vs. frequency result, from [6] based

on the hybrid modal method and compared with measurements obtained at OSU-
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ESL. Figure 27 shows the inverse Fourier transform of the frequency data of Figure
26 which shows the scattering centers in the time domain. It is easy to distinguish
between the scattering by the rim at the open end and the scattering by the planar
termination using this technique.

Another interesting result which was discussed in [6] and [13] is the selective
modal property of the coupling of the incident plane wave into waveguide modes.
Simply stated, the modes most strongly excited by a plane wave incident on the
open end of the guide are those whose mode angles are closest to the direction
of the plane wave. Using this principle, many of the propagating modes can be
neglected for a given incidence angle because they are too weakly excited. This
can greatly improve the efficiency of the hybrid modal method, for cases where the
selective modal property is applicable, especially for large waveguide cross-sections
which would otherwise allow too many propagating modes to be tractable. Figure
2 in the introduction demonstrates this principle with a result from [6] where an
RCS vs. aspect angle pattern calculated using all of the propagating modes is
compared to one which uses only the three most strongly excited modes for each
incidence angle. This particular waveguide cavity propagated over 100 modes at
the frequency used in the calculation, implying a great savings in computation
time.

In [7], the scattering by a 2-D S-shaped waveguide cavity with a planar termi-
nation and slightly lossy inner walls was analyzed using the hybrid modal method.
The S-shape was achieved by joining together parallel-plate and annular waveguide
sections alternately. Because a junction between these two types of waveguides is
smooth, it was found th'at the modal reflection from the junctions is very small
and can be neglected, thus simplifying the analysis. The small loss of the waveg-

uide walls was handled using a simple perturbation technique which required that
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the equivalent surface impedance of the walls be small. The corresponding lossless
waveguide modes are then used with a perturbation to their propagation constants
which causes them to attenuate as they travel. Figure 28 shows a typical backscat-
ter vs. angle result for a straight cavity and an S-shaped cavity, with and without
loss. The loss was due to a thin absorbing layer covering perfectly conducting
walls, which caused approximately 1 dB of loss to occur per reflection near normal
incidence. The scattering by just the rim at the open end is also shown on the
plots. As Figure 28 suggests, the effect of the S-shape is to flatten out and lower
the overall pattern and to make the absorber coating have more effect, especially
near axial incidence.

The scattering by a 3-D version of the S-shaped cavity was done in [9], but
no loss was included. This was because there is no simple way to use the pertur-
bation method for 3-D waveguides in which there exists a power coupling between
modes. The exact modal fields could be found for a uniform 3-D waveguide with
impedance walls, but (a) this requires complicated numerical solutions to the eigen-
value equations, (b) there is power coupling between modes (i.e., the modes do not
carry power independently of all other modes) which does not occur for the lossless
case, and (c) the modal rays would become complex and not lend themselves easily
to the hybrid asymptotic modal method. Figure 29 shows a typical backscatter
vs. angle result from [9] for a straight rectangular cavity and Figure 30 shows one
for a 3-D S-shaped cavity.

In (8], the scattering by single section, perfectly conducting, 2-D linearly ta-
pered and parallel-plate waveguide cavities with plane and plug terminations was
found using the hybrid modal method. The modal termination reflection matrix
[St] was found using the method of moments, providing a highly accurate result.

Figure 31 shows a typical backscatter vs. aspect angle result from [8] where the
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effect of a wedge-shaped plug termination is compared with a planar termination.
As expected, the plug redistributes the scattered energy such that the return is

reduced near axial incidence, as opposed to the planar termination which gives a

maximal return in that region.
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CHAPTER III

THE GEOMETRICAL OPTICS RAY SHOOTING METHOD

The geometrical optics (GO) ray shooting method has been used to analyze
much more general open-ended cavity geometries than the hybrid modal method
could handle [7], [14]-[19]. In the hybrid modal method of Chapter II, the cavity
geometries were limited to ones which could be made up of finite sections of uni-
form waveguides for which the modal fields could be written in closed form as an
eigenfunction expansion. In addition, these waveguide sections would have to be
perfectly conducting, or nearly perfectly conducting as in the modal perturbation
technique used in [7]; otherwise, a great deal of complexity and numerical analysis
gets added to the modal method. Examples of the modal analysis of non-perfectly
conducting waveguide cavities appear in [15] for a parallel plate waveguide and in
[16] for a circular waveguide. Finally, the number of propagating modes involved
in the hybrid modal analysis increases exponentially with frequency. Therefore,
while the hybrid modal method is highly accurate, it also becomes more difficult to
use for many realistic cavity geometries of interest. However, the usefulness of the
hybrid modal method becomes evident when it is used to validate more general
and approximate methods, such as the ones described in this and the next two
chapters.

In the GO ray tracing method, also referred to as “shooting and bouncing

rays” (SBR) [17], the incident plane wave field which enters the cavity is broken
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up into a dense grid of parallel ray-tubes. The central ray of each ray-tube is
then traced via the laws of GO inside the cavity and the field in any transverse
cross-section of the ray-tube is assumed to be that of the central ray. Also it is
often assumed that the exact shape of the ray-tube is relatively arbitrary as long
as the cross-sectional area is known. These two assumptions are reasonable if the
cross-sectional area of each ray-tube is kept to less than (%A)z where X is the free
space wavelength [18].

It is possible to trace the boundary rays of the ray-tubes in order to know
the exact shape of the cross-section and thus allow larger ray-tubes [17,18], but
this may not be desirable because larger ray-tubes sample a larger portion of the
cavity walls which they reflect from, and therefore may lose some information on
the geometry. Also, since the ray tubes are eventually integrated in some way, such
as in an aperture radiation integration (Appendix B) or the termination reciprocity
integral (Appendix C), it may be difficult to integrate ray-tubes of irregular shapes
[17,18]. It is very convenient to be able to pick an arbitrary ray-tube shape which
allows for a simple integration.

The advantage of the GO ray tracing method (SBR) is that it can handle
very general cavity geometries with many possible surface characteristics, as long
as the reflections of the rays by the interior cavity walls dominate the interior
scattering effects. Also, the ray tracing part of the method is relatively frequency
independent so that it is feasible to extract a fairly broad band of frequency data
from a single set of traced rays. However, the GO method neglects all higher order
effects such as diffraction. Probably the most important of these higher order
effects which are not included is the part of the incident field which enters the

cavity via diffraction by the edge at the open end. Of course these effects diminish

as the frequency increases because the GO field is the only term left in the high
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frequency asymptotic series of the EM field as the frequency approaches infinity.
Other disadvantages of the GO method are that a new grid of rays must be traced
for each new incidence angle, and the incident field must always be ray-optical.

In this chapter, the theory behind the launching and tracking of the ray-tubes
and their subsequent integration will be discussed and some numerical results will
follow. The actual tracking of the GO field will be referred to as the GO ray
shooting method. When this is combined with an aperture integration (AI) it will
be referred to as the GO/AI method, and when it is combined with the reciprocity
integral (RI) it will be referred to as the GO/RI method.

3.1 Formulation of the Geometrical Optics Ray Tracing Method

3.1.1 Launching the ray-tubes.

In the GO ray tracing method, the incident plane wave field which passes
through the open end of the cavity is divided up into a dense grid of parallel ray-
tubes which normally have a square cross-section. This is illustrated in Figure 32
for a 2-D geometry. The fields of each ray-tube are then tracked using the laws of
GO through the cavity to some required location, such as to the termination as in
the GO/RI method, or down and back to the open end as in the GO/AI method.
Figure 33 shows one such ray-tube.

As the ray-tube undergoes reflections from curved surfaces, it experiences
changes in its divergence (curvature or spreading factor) and the shape of the
ray-tube distorts. It is therefore necessary to have a way of keeping track of this
divergence and shape change (in addition to phase propagation, polarization and
reflection coeflicients) in order to know the fields inside the ray-tube. There are
several ways of doing this. One way is to ray trace the central ray of the ray-tube

using the laws of GO to give the field in the center of the ray-tube, and then trace
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tracing method.

SIMPLE PLANAR
TERMINATION

OUTPUT
AREA

— 0

Figure 33: A single ray-tube tracked through a cavity until it exits via the open
end.
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the four corner rays geometrically, without keeping track of divergence, to give
the shape of the ray-tube. It is then assumed that the fields anywhere in a cross-
section of the ray-tube are the same as the field of the central ray. Another more
approximate method ray traces the four corner rays without divergence to give the
shape of the ray-tube (and therefore, the cross-sectional area), and the magnitude
of the divergence is found by conserving the total power in the ray-tube (neglecting
any ioss associated with non-perfectly conducting walls). The magnitude of the

field at a point P inside the ray-tube (without loss) is then given by

B = i (B

electric field at P assuming lossless walls,

(3.1)

where

=
3
Il

E_"in = electric field at the input,
A;, = input cross-sectional area of ray-tube,

A(P) = cross-sectional area of ray-tube at P.

This method reduces the complexity of GO by not requiring calculations involving
the principle radii of curvature of the ray-tube and the curvature of surfaces the
ray-tube reflects from. However, all information on the phase shifts associated
with propagation through caustics is lost. It is noted that this method of tracking
a ray-tube does not require that the ray-tube be less than (%/\)2 in cross-sectional
area as mentioned earlier.

Probably the easiest method which keeps information on caustics and diver-
gence is to track the central ray of the ray-tube using GO and assume that the
field in any transverse cross-section of the ray-tube is that of the central ray. The

cross-sectional area of the ray-tube is known by conserving power as in (3.1). At
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a point P in the ray-tube, the cross-sectional area is then given by

L 2
apy = Ly (32
[Ecpy]

In this ray-tube tracking method, the cross-sectional area is found from (3.2), but
the exact shape of the ray-tube is unknown. However, if the area of the ray-tube
is kept small enough, i.e., less than (%)\)2, then the exact shape of the cross-
section is relatively arbitrary and can be made into any convenient shape. This is
demonstrated for a sample case in the aperture integration method in Appendix
B. For example, the shape could be chosen to coincide nicely with the coordinate
system in which the integral is evaluated. Of course the problem with this method

is that a larger number of rays may have to be traced in order to keep the ray-tubes

small enough.

3.1.2 GO ray tracing using curvature matrices.

An efficient means of tracing a given ray via the laws of geometrical optics is
available through the use of curvature matrices which describe the curvatures of
reflecting surfaces and the GO wavefront of a ray as it propagates and reflects {17].
The derivation of this method is found in [20,21,22] and the pertinent resulting
equations are presented here. Consider the GO ray-tube shown in Figure 34 which
propagates from point O to point P. According to GO, the field at P is related to
the field at O by

E(P) = (DF)E(0)e~7* (3.3)

where (DF) is the divergence factor given by

1 1
\/1+8/R1 . ﬁ+8/Ré

(DF) = (3.4)
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CAUSTICS

Figure 34: GO ray-tube propagating in free space and its caustics.

and
Ry, Ry, = principal radii of curvature of the wavefront at P (i.e., caustic
distances),
s = propagation distance from O to P.

The sign convention for the square roots in (3.4) is as follows:

1 forl+—>0
;;1+8/R1,2 m
1
S - . (3.5)
1+ 8/R1‘2
1 ej%

for1+7§;—2-<0

;;1+8/R1’2

The caustics shown in Figure 34 are points where the GO field becomes sin-
gular, as is evident from (3.3) and (3.4) if s = —Ry or s = —Ry. However, in
the application of GO to treat realistic open-ended cavities this has not been seen
to be a serious problem, mainly because it is highly unlikely numerically that a
caustic of a given ray-tube will occur exactly in the plane of integration, and if it
is nearby it will tend to integrate to a finite value, as in a Cauchy principal value

integral.
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The principal radii of curvature R; and Ry of a surface can be found from the

curvature matrix 5(P) at point P on the surface using

1 1 = 1 = 2 =
iy " S TrQ(P) £ 5 [TrQ(P)]” - 4DetQ(P) (3.6)
where
6(P) — 2 x 2 curvature matrix at P,
Tra = trace of matrix 22:,
Det5 = determinant of matrix 5

Now the question arises, what exactly is 5 and how is it defined? Let an
arbitrary parametric surface be defined by #(u,v), a vector from the origin to a
loci of points, where (u,v) are the parametric coordinates on the surface, and let
N (u,v) be the unit normal vector of the surface. The curvature matrix 5 is then

defined by

(3.7)

where the subscript u or v denotes differentiation with respect to u or v. It is noted
that 7y, Ty, Nu and N » are tangent to the surface, but not necessarily orthogonal.
As examples, if 7y and 7y are the principle directions of the radii of curvature

(and therefore orthogonal), then

— = 0
=" | (3.8)
0 =
or if the surface is planar then
= 00
Q = : (3.9)
00



ORIGIN

Figure 35: Parameterized surface with tangent vectors £; and #5 and normal
vector N on the surface.

but in general, the principal radii of curvature are related to 5 through (3.6).

To find the curvature matrix for a given surface defined by the parameterized
vector 7(u,v), refer to Figure 34 where #; and &, are arbitrary orthogonal unit
vectors tangent to the surface. The curvature matrix for this surface is then given

by

_ ! @u Q12 7 (3.10)

Q21 Q~22

Q|

where

Fu'il Fu'£2

V = (3.11)
Fv 531 Fv 5’2
~ _ eG-—fF -  fE—¢F
Qu = po—Fp @z = 50 B2
5 _ fG—gF ~  gE—fF

E = Fu‘f‘u, F == Fu"f_"v, G = Fv"'?v
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4

Figure 36: GO reflection of a ray from a curved surface.
e = Fuu'N, f:'rAuv‘N, g:FvU'N- (3.13)

The double subscripts uu, uv and vv denote second derivatives.
It remains to be seen how the curvature matrix of a ray-tube changes as it
propagates and as it reflects off curved surfaces. Again referring to Figure 34, the

curvature matrix at P is related to the curvature matrix at O according to the

propagation relation

1

oP) = {@(0)]’1 + 37}_ (3.14)

where

I = (3.15)

and once again s is the propagation distance from O to P. The divergence factor
(DF) of (3.3) can now be found using (3.4) thru (3.6).

To find the curvature matrices associated with reflection from a curved surface,
refer to Figure 36. N is the unit surface normal and the reflected ray obeys Snell’s

law of reflection, i.e., #; = 8, and the incident and reflected rays lie in the same
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plane. The electric field at a point P can be written similarly to (3.3) as

E(P) = (DF)-T-E(07)e 7% (3.16)
where
E(0O7) = electric field immediately before reflection,
' = dyadic plane wave reflection coefficient.

The divergence factor (DF') is again given by (3.4) and (3.5) with the principal radii
of curvature R; and Ry given by (3.6). The dyadic plane wave reflection coefficient
T relates the polarization components of the incident and reflected electric fields.
Because of the localized nature of high frequency fields, it is assumed that this
dyadic reflection coeflicient is the same as for the case of a plane wave incident on
a planar interface of the same material.

Using (3.14), the curvature matrix at P is given in terms of the matrix at Ot

by
QP) = {[5(0*)]-1 + 37}—1 (3.17)
where
5(0+) = curvature matrix just after reflection.

Referring to Figure 37, the reflected curvature matrix 5(0'*) is related to the

incident curvature matrix 5(0_) by the relation
(Pi)” QO )Pi+2p33Qs = (Pr) Q(O1)P, (3.18)

where

ol
Il

(3.19)

ir
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Figure 37: Coordinate systems of the surface and the incident and reflected rays.

~

p33 = 2N (3.20)
= T D
(ﬁi,r) = transpose of P;;,

55 — curvature matrix of the reflecting surface at O.

Qs is found using (3.10) thru (3.13) and the coordinate vectors of the incident
and reflected rays and the surface are shown in Figure 37. For the purpose of
tracing a ray through multiple reflections inside a cavity, the following choices
for the reflected wavefront and surface orthogonal coordinates are often used for

convenience [17]:

£ = 7
Curved surface: :L (3.21)
:ﬁz = N X:il = 'Fv
#] = N x £ /siné;
Reflected wavefront: (3.22)
gy = 2" x 2
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where

Tu = unit vector in the direction of 87/du,

Ty = unit vector in the direction of 87/8v.

In other words, the surface coordinate vectors #; and &5 are derived from Tu, and
the reflected wavefront coordinate vectors z] and 2} are perpendicular and parallel
to the plane of incidence, respectively. The incident coordinate vectors a‘:’i, 'E"z and
£t are known a priori and 2" is found from 3* using Snell’s law. The reflected
coordinate vectors will become the new incident coordinate vectors for the next
reflection, and so on.

For the very first reflection, i.e., when a ray-tube of the incident plane wave
field first strikes a cavity wall, the incident wavefront curvature matrix is a zero
matrix, asin (3.9), representing a planar wavefront. A convenient choice of incident
coordinate vectors for this first reflection is (referring again to Figure 37)

& = &

Incident wavefront, first reflection: ‘ ‘ (3.23)

~1 2t ~1

N>

where &] is given in (3.22).

3.2 Exterior Field Scattered by the Interior Termination Using GO
Based Equivalent Sources

As mentioned earlier, to obtain the fields scattered by the interior cavity

termination using the GO method, one of two integral methods are used. The first

of these is an integration over the aperture at the open end and it is referred to as

GO/AI the second is based on the use of a generalized reciprocity integral over

an aperture surface defined conveniently in the vicinity of the termination and it

is referred to as GO/RI. Thus, the main difference between the two is that in the
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GO/AI method, the ray-tubes are traced from the open end to the termination
and back to the aperture at the open end where they are integrated, while in the
GO/RI method they are traced only from the open end to some waveguide cavity
cross-section before but near the termination of the cavity where they are “reacted”
(in the form of a generalized reciprocity integral) with all the other ray-tubes and
integrated. However, in general, the GO/RI method also requires the use of an
aperture integration because some ray-tubes may never reach the termination but
will exit through the open end. The main advantage of the GO/RI over the GO/AI
method is that complex terminations can be included which GO alone could not
handle, provided there is some other means of characterizing the EM reflections

from the termination.

3.2.1 GO combined with an aperture integration (GO/AI).

Once again, as in the hybrid modal method of Chapter II, the scattering from
an open-ended waveguide cavity will be restricted to the scattering by the rim at
the open end and the scattering by the interior termination. No other external

scattering mechanisms are included. The total scattered field with this restriction

can then be written as
E* = E* 4+ E* (3.24)

where

57 = field scattered by the rim alone,

—

E* = field scattered by the interior of the cavity.

In Chapter II, the incident plane wave field E'is given by (2.1) and the rim

scattered field E°" is given by (2.21) thru (2.24) and will not be repeated here.
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Figure 38: Projections of ray-tubes in the open end as they exit the cavity.

The cavity scattered field E* is due to ray-tubes incident at the open end
which have been traced inside the cavity via interior wall reflections and the ter-
mination until they exit through the open end. This method requires that one
know how the ray tubes reflect from the termination; clearly the GO/AI (or SBR)
method can accomodate only simple terminations, e.g., a planar reflecting surface.
When the ray-tubes exit through the open end after reflecting from the termina-
tion, their cross-sectional shapes and areas have changed and their projections in
the plane of the aperture at the open end form discrete patches or footprints where
their fields exist, as shown in Figure 38. Hence, an aperture integration over these
patches is necessary to obtain a continuous scattered field from a discontinuous,
rapidly varying aperture field distribution obtained via GO ray tracing.

The cavity scattered field can be written as a sum of contributions from all
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Figure 39: nth ray-tube exiting through the open end of a cavity.
the ray-tubes which exit through the open end as
— N —
E* = Y E;f (3.25)
n=1
where

E¥ = field “radiated” by the equivalent (Kirchhoff or PO based)
sources corresponding to the fields of the ntt GO ray-tube in the

aperture at the open end.

Figure 39 shows the nth ray-tube and its projection in the open end. As shown
in Appendix B Equation (B.11), the far field radiated by the equivalent sources in

the Kirchhoff approximation for the aperture radiation integral is given by

. —gkr
o A a . . jke™?
B = —[f X pp + 7 X (F X Pen)]7—

. _.',.
ar Enoe”™*™ " AnSn(F)
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where

t!

Pen

Zshn

(3.26)

vector from the origin to the receiver point,

unit polarization vector of the electric field of the nt* ray-
tube in the open end,

unit polarization vector of the magnetic field of the nth ray-
tube in the open end,

];n X Pen

unit vector in the direction of propagation of the n'h ray-tube,
Zn

scalar portion of the electric field of the nth ray-tube in the
open end,

cross-sectional area of the n?® ray-tube in the open end,

vector from the origin to the intersection of the central ray

of the nth ray-tube with the open end.

The form of (3.26) is that of a spherical wave, originating at the point where the

central ray of the ray-tube intersects the open end, whose pattern is determined

by the normalized shape function Sp(#) [17,18] which is given by

1 TN S
A - Tk F 4ot
Su(F) = An//Ane ds (3.27)

with the relative geometry of the nth ray-tube in the open end shown in Figure
g p g

40, and

'
7

vector from origin to a source point in the coordinate system of
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Figure 40: Relative coordinate system and geometry of the nth ray-tube in the
open end.

the nt? ray-tube,
# = unit vector in direction of observer.

The integration is over 7' in the z,-yn plane within the cross-section of the nth

ray-tube where it intersects the open end. Integrating over the cross-section of the
ray-tube is easier to perform than integrating over the oblique projection of the
ray-tube in the open end.

The shape function of (3.27) is actually a two-dimensional Fourier transform
of the shape of the cross-section of the ntt ray-tube, and can thus be found for an
arbitrary polygonal shape [17]. For example, if the cross-section is a square with

its sides parallel to the z and yn axes, the shape function is given by

. . 1 . . 1 . .
Sp(?) = sinc (Ek A;, cos @p sin Gn) sinc (ék\/An sin ¢p sin 0,,)
(3.28)
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where

sinz

sinc(z) = (3.29)
T
0,,6n = angular coordinates of the observer in the coordinate system

of the nt* ray-tube,
as shown in Appendix B. If the cross-section is circular, then [18]

Sn(f) = 2h) (3.30)

u
u = k éﬁsinGn
V =
[An 14 i
= k -;—sm(cos r-kn) (3.31)

Ji(x) = the first order Bessel function of the first kind.

where

However, as mentioned earlier in Section 3.1.1, if the cross-sectional area An
of the ray-tube is less than (%A)z, the exact shape of the ray-tube can be assumed
arbitrary in the calculation of the shape function, provided that the ray-tube is
roughly symmetric about its central ray. The radiation pattern determined by the
shape function for such cases will be symmetric about the z, axis and depend only
on the cross-sectional area and 6. This is demonstrated in Appendix B for the
case of a cross-section which is approximately square. The shape function for this

case becomes, from (B.19) and (B.26)
$ulr) = ine (LkyAmsinga)
n(f) = sinc 5 nsin by,
. 1
= smc(—z—k\/An

which is rotationally symmetric as desired. If the pattern of the ray-tube is shape

7 x knl) (3.32)

independent, then the expressions of (3.30) and (3.32) should be very nearly the
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same for /Ap < %)\. This is shown in Appendix B by comparing the quadratic
portions of the Taylor series expansions of the two shape functions for small argu-

ment. Thus, (3.30) becomes

2Jy (k\/ Aﬂ?‘ sinﬂn)
k\/%‘?‘sinﬂn

1
8

~ 1

2
(k A, sin en) (3.33)

and (3.32) becomes

. (1 : 1 . 2
sinc (-ik\/An sin On) ~ 1- 24 (k\/An sin On) (3.34)

which are nearly identical for practical purposes.

In summary, the recommended method of using GO /Al is to choose a dense
enough grid of ray-tubes for the incident plane wave field which enters into the
cavity at the open end, such that the ray-tubes exit the cavity with a cross-sectional
area less than (%)\)2 The central ray of each ray-tube is then traced via GO as
described in Section 3.1.2 to obtain the field Epno in the cross-section of the ray-
tube where it exits through the open end. The cavity scattered field is then given
by (3.25) and (3.26) along with (3.30) or (3.32). Using (3.2) the cross-sectional

area of the nth ray-tube in the open end is

B’
An == _‘“ 2Am (3-35)
|EX,
where
Ef,’o — electric field of the nt? ray-tube in the open end assuming no loss,
A;, = initial area of the ray-tube when it was launched.

Since it is not usually known a priori what the cross-sectional area of ray-tubes

will be when they exit, it is difficult to know just how dense to make the initial
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grid of ray-tubes upon entry. They should, of course be less than (%)\)2 in cross-
section, but because of divergence effects, this area tends to grow the farther the
ray-tubes must travel and the more reflections from curved surfaces they undergo.
One solution is to launch denser and denser grids of ray-tubes by trial and error
until they are all sufficiently small when they exit. However, it is usually much
more efficient to use an algorithm which sub-divides a ray-tube which is too large
when it exits into smaller ray-tubes. These new ray-tubes are re-launched and the
process is repeated. This procedure is more efficient than to make all the ray-tubes

in the grid smaller just because one ray-tube came out too large.

3.2.2 GO combined with the termination reciprocity integral (GO /RI).
The termination reciprocity integral is formulated in Appendix C for the gen-

eral case of an open-ended waveguide cavity illuminated by two electric current

point sources of strengths p'and 7', as shown in Figures 95 and 97. The source p'is

located at a point P and 7' is located at P’. The termination reciprocity integral

given by (C.15) is formulated for this general case as
E(P)-F = - //S (E; x B, — B! x H;) - 7dS (3.36)
t
where

E!(P) = electric field at P scattered by the termination of the cavity
when it is excited by an electric current point source
of strength p'! at P/,
E; H; = fields due to p'in the absence of the termination but in the
presence of the semi-infinite waveguide cavity,

-t

E:, H! = fields due to 7’ scattered by the termination in the presence
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of the semi-infinite waveguide,

S¢ = a cross-sectional surface chosen conveniently in front of the
termination,
# = unit surface normal of S; pointing away from the termination.

Throughout this section, a primed quantity means that it is associated with the
source at P’ and a corresponding unprimed quantity means that is associated with
the source at P. By an appropriate choice of P, any component of the scattered

field can be extracted using (3.36). For example,

E!,(P) = & component of E\(P)

- E\(P)-F \ﬁzﬁ : (3.37)

What (3.36) and (3.37) imply is that the field at P which was scattered by
the termination due to fields from the current element at P' can be found by
tracking the fields from both p and p' inside the cavity to the cross-section Sy
and integrating as in (3.36). Therefore, the fields do not have to be tracked back
out of the cavity as is necessary in the GO/AI approach. The fields from p at St
are in the absence of the termination and the fields from p’ ! are in the presence
of the termination. It is noted that (3.36) includes all multiple wave interactions
between the termination, the open end and any other scattering centers; however,
these effects are generally not significant if the interior reflection by the termination
is substantially bigger than the interior reflection of waves from the open end and
can therefore be neglected. The latter situation which is of interest here is also
true if the cavity walls are coated with a layer of absorbing material. It is assumed

that the above conditions are met in the present study; hence, these multiple wave
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interaction contributions to E!, H' can be ignored here. Since the fields in (3.36)
are computed approximately by GO ray tracing, the result in (3.36) is approximate
even to first order. It is important to note that the exact form of (3.36) does not
include the effects of waves which experience reflections from the interior cavity
region without reaching the termination plane S;; however, this contribution can
be significant when it exists (as in tapered waveguides for example) and it must be
added separately. The latter contribution when it exists can be found easily within
the GO approximation by using the aperture integration method of Section 3.2.1,
applied only to those ray-tubes which exit from the open end without reaching the
termination. Also, (3.36) does not include any external scattering such as that due
to the rim at the open end, but this can be added separately as was done for the
rim in Section 3.2.1.

To use the termination reciprocity integral of (3.36) with the GO method, the
point sources at P and P' must be moved to infinity so that their fields incident
on the cavity are plane waves. As noted in Appendix C, the plane wave fields of

an electric point source p are given by

EjR) = E,e %R (3.38)

— — 1 ~ — .
HyR) = _Rx E e TkR (3.39)

o
where

- lim . . ikZ
B, = _Rx Rxplife (3.40)

R — oo 4R

R = vector from current element to receiver.

Also as noted in Appendix C, the bistatic radar cross-section (RCS), or the “echo

area”, for the co-polarized and cross-polarized fields, respectively, are most often
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the figures of interest. In terms of g and ¢ polarizations, the two co-polarized echo
widths are ogg and 044 and the two cross-polarized echo widths are ogg and o4g-
The first subscript denotes the polarization of the receiver at P and the second

subscript denotes the polarization of the source at P'. For example, gg4 is defined

as in (C.31) by

lim (B (P)|”

= 3.41
" r— 00 lE' |2 ( :
o¢
where
E(P) = ByP) 7| (3.4
E(',¢ — ¢ component of the plane wave field incident on the cavity
from the direction of P,
r = distance from the open end of the cavity to P and P
As shown in Appendix C, (3.41) can be written as
2
(kZo)* |Efe(P)
T i o 2 3 (3.43)
T 1Bl [y
where
Ey = 6 component of the plane wave field incident on the cavity from

the direction of P,

which is a much easier form to use computationally. The other three bistatic RCS
components are found using this same equation with the appropriate interchanges
of § and ¢.

It remains to compute (3.36) using the fields at S¢ which have been found using

the GO ray tracing method of this chapter. Because it is not a simple matter to do
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the integral using the ray-tube fields themselves and because it is not easy to find
E‘Z and H s of (3.36) for complex terminations, it is usually necessary to transform
the GO fields incident on S; into some regular expansion such as a modal or plane
wave expansion. Other transformations have been suggested such as a Gaussian
beam expansion or a simple point matching scheme, but so far only the modal
expansion has been investigated in any depth and so only it will be described
here. Whatever the transformation, it is assumed that the fields reflected from
the termination can be found in terms of the new expansion. In the case of the
modal expansion, the modal reflection matrix [Sy| described in Chapter II must
be known.

To use the modal form of the termination reciprocity integral, it is necessary
that the region near the termination be a separable waveguide section for which the
waveguide modal fields are known. For example, the region near the termination in
Figure 95 is a circular waveguide. Then the fields in this circular waveguide region
can be expanded as a sum of waveguide modes as in Chapter II and appendix

Section C.2. As shown in Appendix C, the modal form of (3.36) is given by

M
B(P)-5 = -2 Y Ah4y (3.44)
m=1
where
Ax = émt X H;) - 7dS 3.45
m '/~/St( mt 1) n ( )
AF = / /S t (éme x H) - dS (3.46)
[A7"] = [Sp)i4a*] (3.47)
and

ff,-,H£ = magnetic fields incident on S; from P and P', respectively,
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émt = transverse component of the electric field of the mth waveguide
mode,
M = number of included waveguide modes,
7 = waveguide axial coordinate unit vector pointing towards the

interior termination.

It is assumed that n = 0 is chosen to coincide with S;. [A™'] and [A1'] are column
matrices containing the M modal coeflicients Al and Ay, respectively, and [St] is
the termination modal reflection matrix of order M x M which relates the incident
modal coefficients to the reflected coefficients, referenced at the cross-section Sy
(i.e, at 7 = 0). Equation (3.44) can now be used to evaluate the scattered field
component as in (3.37) or (3.42).

The modal coefficients of (3.45) and (3.46) can be found in terms of the ray-
tubes which are incident on S;. These can now be written as a sum of integrals

over the ray-tubes at Sy:

Q
AL = % / /5 (emt x Hig) 7S (3.48)
g=1 7
!
A = % // (mt x Hiy) -7dS (3.49)
I Sy 7
q=1 q
where
Sq qu = projection of the qth or ¢ th ray-tube on Sy,
ﬁiq, I_j:-q, = magnetic field of the qth or ¢ th ray-tube incident on S,
Q,Q" = number of ray-tubes which reach the cross-section St

from P or P'.

Once again, the primed quantities are associated with the point source at P' and

the corresponding unprimed quantities are associated with the point source at P.
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The area of the projections of the ray-tubes on S; are related to the cross-

sectional areas of the ray-tubes by

A
S¢ = L (3.50)
kg 1
where
Ay = cross-sectional area of the g** rav tube,
I}q = unit vector in the direction of propagation of the central ray of

the qth ray-tube,

and similarly for Sq: and Aqy. The fields ﬁiq and H z{q, can be found easily from
the field of the central ray of a ray-tube because the field inside a ray-tube is
assumed to be constant at any given cross-section. The field of a central ray is
found by launching a ray-tube as described in Section 3.1.1 and by ray tracing it
as described in Section 3.1.2.

As mentioned before, it is expected that if the cross-sectional area of a ray-
tube is less than (%/\)2, then the exact shape of the ray-tube about its axis is not
important in the integral so that any convenient shape may chosen, as long as the
area stays the same. For example, if the integration is in the z-y plane then the
projection would be chosen to be a square with sides of length \/S’q parallel to the
z and y axes. This makes the integrals in (3.48) and (3.49) much easier to evaluate

numerically.

3.3 Numerical Results and Discussion of the Geometrical Optics Meth-
ods

In this section numerical results obtained using the GO method will be pre-

sented and in most cases will be compared with more accurate modal reference

92



solutions. All of the plots of this section are taken from sources listed in the
references and these sources will be cited as the results are presented.

In [7], the scattering from 2-D straight and S-shaped cavities with planar
short circuit terminations and absorber coatings on the inner walls was analyzed
using the hybrid modal method of Chapter II and the GO/AI method of this
chapter. It was found that the GO/AI method could predict the general trends
of the backscatter pattern when compared with the modal reference solution, but
often failed to depict accurately the details of the lobe structure such as locations
of peaks and nulls. This has often been seen in other work which used the GO
method, such as in [14], [16] and [17]. However, the GO method is useful in many
practical applications which do not require as much accuracy in the pattern details
and in applications where other methods, such as the hybrid modal method, can
not be used due to non-uniform geometries and arbitrary absorber treatments.
Figure 41 shows a typical backscatter vs. aspect angle result from [7], comparing
results obtained using the hybrid modal perturbation method and the GO/Al
method applied to a shallow S-shaped cavity. The modal result shows plots for the
lossless case and for the 1 dB loss/reflection absorber coated case, while the GO/AI
result shows these two plots plus one for the 5 dB loss/reflection case. Both show
the scattering by just the leading edges of the cavity. It is noted that the modal
perturbation technique could not handle the higher loss case. As the figure shows,
the GO/AI solution agrees fairly well for this shallow cavity, which is generally
the case. However, as the length of the cavity increases, the GO/AI result gets
worse because the actual fields in the cavity diverge more due to diffraction effects,
which the GO field does not include. Also, because of ray divergence effects, the
longer the cavity is the more rays need to be traced, thus decreasing the efficiency

of the method.
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In {16}, the GO/AI method, there referred to as the shooting and bouncing
rays (SBR) method, was applied to open-ended waveguide cavities with planar
terminations which were modelled mathematically using transitions between ge-
ometric shapes along with axis-shifting lofting functions. An example of such a
cavity would be one which starts out with a square cross-section at the open end
that slowly becomes circular by the region near the termination, and a lofting
function is used to bend the axis of the cavity into an S-shape. Figure 42 shows a
typical RCS vs. aspect angle result from [16] for an open-ended circular cylinder
with a planar termination, found using SBR and compared with a modal result.
The agreement is good in terms of the general trends of the pattern, but not as
good in terms of detailed lobe structure, as was discussed above.

Figure 43 and 44 show typical bistatic scattering (BCS) vs. observation angle
results from [16] for two geometric transition/lofted S-shaped cavities. Since there
is no modal reference solution available for such general configurations, the plots
show only the SBR result and illustrate the convergence of the solution in terms
of ray density. In general it was found in [16] that the ray density needed to be
approximately 15 to 20 rays per wavelength for convergence of the solutions for
the geometries considered.

Figure 45 shows an RCS vs. aspect angle result from [16] for a triangle-to-circle
cavity, with and without offset and with and without absorber coating. As the
figure shows, the offsetting the termination reduces the RCS somewhat compared
to the non-offset case, and the absorber combined with the offset reduces the RCS

quite significantly.
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CHAPTER IV

THE GAUSSIAN BEAM SHOOTING METHOD

In this chapter, the scattering from the interior of relatively arbitrary open-
ended waveguide cavities with smoothly curved interior walls is analyzed using
a Gaussian Beam (GB) expansion of the incident plane wave fields at the open
end. The cavities under consideration may contain perfectly-conducting interior
cavity walls with or without a thin layer of material coating, or the walls may be
characterized by an impedance boundary condition. As before, the scattering by
external features of the cavity, such as by the rim at the open end, must be added
separately to the scattering from the interior of the cavity; again only the rim
scattering will be included here. The termination of the cavity may be arbitrarily
complex as long the scattering properties are known in some manner, such as via
a modal reflection matrix or a plane wave spectral expansion.

In the GB shooting method, the incident field in the open end of the cavity is
expanded in terms of an array of shifted and rotated Gaussian beams. At optical
wavelengths, an example of a well known type of Gaussian beam is a laser beam.
At microwave frequencies, GB’s are typically much wider and diverge faster than
laser beams, but their basic functional form is the same. These GB’s are allowed
to propagate inside the cavity, reflecting off the cavity walls. If the GB’s are well
focussed, it is assumed then that they can be tracked within the interior waveguide

cavity region only along the axis of the beam in a manner similar to geometrical
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optics (GO) ray tracing. The reflection of a GB from a curved wall is subsequently
found in this axial beam tracking approximation by assuming that an incident
GB gives rise to a reflected GB with parameters related to the incident beam and
the radius of curvature of the wall. It is found that this approximation breaks
down for GB’s which come close to grazing a convex surface and when the width
of the incident beam is comparable to the radius of curvature of the surface. An
important and useful feature of this GB approach is that the expansion of the
fields in the open end depend on the incidence angle only through the expansion
coefficients, so the GB’s need to be tracked through the waveguide cavity only
once for a wide range of incidence angles. Furthermore, the GB’s are tracked
only to the vicinity of the interior termination from the open end where they are
launched as they propagate via reflections off the interior cavity walls. It is not
necessary to track another set of beams from the termination back to the open end
to find the fields scattered into the exterior by the termination because the use of a
generalized reciprocity theorem allows one to do so with the information available
from tracking the fields only one way (from the open end to the termination).
At the termination, the sum of all the GB’s are integrated using the termination
reciprocity integral described in Appendix C to give the fields scattered from the
interior of the cavity.

Results are compared with solutions based on the hybrid asymptotic modal
method. The agreement is found to be very good for cavities made up of planar
surfaces, and for cavities which are not too long with respect to their width with
curved surfaces. General rules of thumb for choosing the proper GB expansion
parameters and length to width ratios of cavities for which the method should be
accurate are presented. It is noted once again that the scattering from external

features of the cavity (other than the open end) are not of interest here and are
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thus ignored, as was done in Chapters I and II. While the development is pre-
sented here for the 2-D case, it can be directly extended to treat the 3-D case in a
straightforward manner.

The analysis in this chapter is for the two dimensional (2-D) plane wave
bistatic scattering case. Therefore, the two possible polarizations are perpendic-
ular (1) polarization in which the electric (F) field is normal to the plane of the
geometry, and parallel (||) polarization in which the magnetic (H) field is normal
to the plane of the geometry. Throughout, the letter U will be used to repre-
sent either the E-field or the H-field, depending on polarization, perpendicular or
parallel, respectively. Also, U represents the scalar portion of U.

Section 4.1 will formulate the problem in terms of scattering by the open end,
found using GTD, and scattering by the termination, found using the termination
reciprocity integral of Appendix C. Section 4.2 will derive the Gaussian beam
basis function and discuss some of its properties. Section 4.3 will describe the GB
expansion of the fields in the open end of the cavity by treating the transmission
through an aperture in free space, and Section 4.4 will discuss how the GB’s
are tracked inside the cavity to the termination. Numerical results will then be

presented in Section 4.5.

4.1 Formulation of the Gaussian Beam Shooting Method

The contributions to the scattering from an open-ended waveguide cavity
which are of primary interest in this work consist of the following components:
the external scattering by the edges at the open end, and the internal scattering
due to incident energy which is coupled to the interior of the cavity, then reflected
by the termination and re-radiated back into the exterior via the open end. All

other external scattering effects from the structure in which the cavity is enclosed
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Figure 46: Scattering mechanisms of a 2-D open-ended waveguide cavity.

are not of interest here and are therefore not included in this analysis. Figure
46 shows a general two dimensional (2-D) cavity geometry which illustrates the
scattering mechanisms of interest. The scattered field can then be written as a

sum of these two scattering components as

g = U +0°* (4.1)
where
U/*" = rim scattering component,
[7*¢ = interior cavity scattering component.

The plane wave field scattered by the edge at the open end of the cavity can be
found easily using the geometrical theory of diffraction (GTD) [1]. The scattered

field for this case is given to first order as (see [7])

_, —Jkp .1 . _
s = éUie\/ﬁ [Ds,h(ﬂ_+08,‘"_+0i)e]§kd(sm0,+sm9,)
1 . . o
Dy p( — 8y, — 8;)e PrdlEmbetsindi)] (4.2)
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Figure 47: Geometry of a 2-D open-ended waveguide cavity.

where

U; = magnitude of the incident plane wave,

9; = incidence angle,

6s = observation angle,

p = distance to the receiver from the center of the open end,

d = width of the open end.

The geometry is shown in Figure 47, with 2 normal to the page. (4.2) is phased
referenced to the center of the open end. D, j, is the appropriate soft or hard

diffraction coefficient (Keller’s form [1]) given by

sin (-’5) 1 1
D ,h(¢’¢,) = : = +
’ VEPZ cos T—’: — cos (Q%Q') cos :1—5 — cos (Lt‘ﬂ)
(4.3)
where
WA
n o= 2% (4.4)
T
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WA = wedge angle of the rim, as shown in Figure 47.

«Soft” and “hard” refer to the polarization and correspond to perpendicular and
parallel, respectively. The edge scattered field given by (4.2-4.4) includes only first
order non-uniform diffraction. This first order result in (4.42) is quite adequate
for large guide widths d and for incidence and scattering angles which are not too
steep (|0;,8s| < 60°) because the higher order diffraction effects will in such cases
be negligible and the transition regions associated with shadow boundaries will
not be in the directions of interest.

In general, the total field scattered by a large open-ended waveguide cavity is
dominated by the interior scattering, whereas, the edge scattering is almost negli-
gible by comparison. However, if the cavity contains a large amount of loss, such as
that due to interior absorber wall coatings, the edge scattering may become much
more noticeable. Therefore, it is important to include this scattering mechanism
in calculations, especially if there is loss present.

The contribution to the scattering from the interior of an open-ended waveg-
uide cavity is found by coupling the plane wave field incident on the open end
into the cavity and then tracking the fields via a GB expansion through the cavity
to the termination. The fields at the termination are then integrated using the
reciprocity integral described in Appendix C and derived in [30]. From (C.15), the
termination reciprocity integral is given as before for the general 3-D bistatic case

by
E_’,(P) p = - /‘/.;' (E; X I_j; — E{, X ﬁz) -ndS. (4.5)
t
See Appendix C for definitions of the quantities and geometry used for this 3-D

case (they will be defined later for the 2-D case). In general, the primed quantities

are associated as before with a point source located at P' and the corresponding
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unprimed quantities are associated with a point source located at P. For the 2-D
case of perpendicular polarization, the E-fields are in the 7 direction (out of the
page), the H-fields are in the plane of the page and p is replaced by the strength
I of a 7 directed electric line source. Also, P’ in is the direction of 0; and P is in

the direction of 8, of Figure 47. The left side of (4.5) becomes
E((P)-F = 3Ej(6.)- (1)
= E.(8,)] (4.6)
where
Ey(8s) = electric field in the direction of 8, scattered by the termination,
due to a plane wave incident from the direction of 6;,
I = 2 directed electric current source located at the point where
E}(8s) is to be evaluated.

The H-field can be derived from the 7 directed E-field for this case using one of

Maxwell’s equations:

— 1 —
H = —ijoV x E
1 (.8 .8 X
= _ijo( 5 T3 ) x (2B)
1 .OE OF
= _JkZo (2!'5; — 5;‘) . (4.7)
The integral of (4.5) can now be reduced as follows:
, , _ _ _1 BE’ AaE;
// EXH EXH - /[ ]IcZ( Oy R
1 (. 0FE;,  OE; .
4w)ﬁ%@®"%Jhﬂm
-1 yd OFE! 1 OF;
= jkZ, /o (E e s ) W “8)
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where 7 has been replaced by —& and the integral is over y from 0 to d, as Figure
47 illustrates.
The field incident on the open end of the cavity due to the line source at P,

i.e., from the direction of 6,, is given by

8r \/p

Eiyy = —2I (4.9)

where
p = distance from the center of the open end to P (from 6, direction).

As p approaches infinity, this field looks like a plane wave incident on the cavity
with magnitude Ej, incident from the direction of 8,. Using this result along with

(4.6) and (4.9), after some rearra.nging gives

e~ Jkp BE" OF;
! _ E
By(8s) = E,om N / ( Zr= )"’y (4.10)

Using the equivalence theorem [32], Hy(6,) for the parallel polarization case is

obtained by replacing E with H in (4.10), and in general

e~Tke auU! aU;
1 - '
Us(8s) = U,om 7 f ( 5z Us am)dy (4.11)

where

U = 3 directed E-field for L polarization or Z directed H-field for
|| polarization,
U'(8s) = scattered field in the direction of 8 (towards P) due to a

plane wave incident from the direction of §; (from pPh,

U; = fields from the source at P in the absence of the termination,
U, = fields from the source at P’ in the presence of the termination,
U;, = magnitude of the plane wave incident on the open end of the

cavity from the direction of 85 (from P).
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and the integral is over a cross-section in the cavity conveniently chosen near the
termination.

Equation (4.11) can also be expressed in terms of the modes of the waveguide
cavity region near the termination, if it is assumed that the region is separable
so that the modes can be found analytically, following a procedure similar to that
used in deriving (4.11), but starting with Equation (C.27) and using (C.22), (C.29)

and (C.30). The scattered field in the direction of 8, {at P) is then given by
+2 etk N

Ule,) = T/ 7 El At Ay (4.12)
where
(A7) = [Sr)[4"] (4.13)
AF = /Od unz%—zidy (4.14)
AT = /Od un,%—lfdy (4.15)
and
Uny = 2 component of the nth waveguide modal field (en; or hyg,
for L or || polarization, respectively),
N = number of included waveguide modes,
[A7'],[AT'] = column matrices of order N containing the modal

coefficients A;’ and A, respectively,
[Sr] = modal termination reflection matrix of order N x N,
U;,Ul = fields from the sources at P and P' in the absence of the

termination, respectively.
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It is assumed that the waveguide cavity region near the termination in this 2-D
case is a parallel plate region; thus the waveguide modal fields for this 2-D case
are the parallel plate waveguide modes and are found in Appendix A. [Sr], the
modal termination reflection matrix is discussed in Section 2.3.4, and determines
the coefficients of the modal field reflected by the termination to the coefficients of
the incident modal field. The incident modal coefficients are found from the fields
incident from P and P' and are given by (4.14) and (4.15), respectively.

The fields inside the cavity are found by first expanding the incident fields
in the open end in terms of shifted and rotated Gaussian beams (GB’s). Each
GB of the expansion of the fields at the open end is then tracked like a ray along
the beam axis to the termination within the waveguide cavity. In order to track
beams axially like rays and maintain sufficient resolution even after successive re-
flections off the interior walls it is necessary to have well focussed or spectrally
narrow GB’s. However, such spectrally narrow GB’s have wide waists. It is thus
important to be able to have spectrally narrow GB’s whose waists can fit easily
within the waveguide cavity. Typically, the initial waists of the GB’s at the aper-
ture plane should be about half the width of the original aperture. The latter can
be accomplished by dividing the aperture at the open end into equally sized sub-
apertures, and then expanding the fields of each sub-aperture into a superposition
of rotated GB’s with equal angular spacing between each rotated beam. Figure
6 illustrates this sub-aperture expansion and shows one GB being launched and
tracked inside the cavity.

The fields at a point P. inside the cavity (such as at the termination plane)

can then be written as a sum of GB’s as

M N
Ui(P.) = Z Z Am(8s,0n)Bmn(Pe) (4.16)
m=—Mn=—N
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M N
Ui(Pe) = 3 3 Am(8i6n)Bmn(Pe) (4.17)
m=—Mn=—N

where

Bmn(P:) = field at P; due to the Gaussian beam launched
from sub-aperture m at an angle 6,, which has
beeu traced inside the cavity,

2M +1 = number of sub-apertures,

2N +1 = number of GB’s per sub-aperture,

expansion coefficients for the mntt GB which

Am(ei,s’ 0,,)
depend on the incidence angle 6; or the

scattering angle 8,, respectively.

Note that only the GB coefficients A4,,(8;,60,) and A,,(8s,0,) change with the
angles of incidence while the directions of the beams do not so that the beams
need to be tracked only once and not each time the incident angle changes.
Section 4.2 will derive the GB basis function used in the expansion of (4.16)
and (4.17) and Section 4.3 will derive the expansion coefficients A, (6; 5,0n). Sec-
tion 4.4 will then discuss how the GB’s are traced axially like rays from the open
end of the cavity to some point P, inside the cavity, such as to the termination

plane.

4.2 Gaussian Beams as Field Basis Functions

The present Gaussian beam (GB) method uses well focused GB’s to axially
track the fields inside a waveguide cavity. This method is useful because the GB’s
are exact solutions to the wave equation (in paraxial regions) and therefore are

well-behaved everywhere (even at caustics), and their propagation and scattering
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characteristics can be found using conventional techniques. Also, it has been shown
by Gabor that a set of Gaussian distributions with appropriate linear phases can
be used as a complete expansion for aperture fields [28,29]. In fact, this type of
Gabor expansion has been used in similar problems involving aperture radiation
in the presence of complex environments, such as in a radome [27], because it gives
a rigorous method of launching Gaussian beams. However, the Gabor expansion
is not used here for the cavity scattering problem because it gives rise to GB’s
which have parameters that vary depending on the amount of their rotation. In
other words, all of the beams arising from the Gabor expansion are not identical,
which hampers the effectiveness of the method when applied to arbitrarily shaped
geometries. The Gabor expansion was useful in [27] because the beam tracking was
done using complex ray tracing. This technique gives more reliable results than
the axial beam tracking method used here, but it is not practical for complicated
geometries where there are multiple reflections, such as in an arbitrarily shaped
cavity.

The results in this section are restricted to two dimensions, however, the GB
method can be extended to 3-D in a straightforward manner. In this section the
QB basis function which will be used in the sub-aperture expansion will be derived
from a 2-D Green’s function with a complex source location [33], and some of the

important properties of the GB basis function will be discussed.

4.2.1 A Gaussian beam as the paraxial field of a point source located
in complex space.

A GB can be derived as the paraxial form of the 2-D Green’s function when

the source point is located in complex space [33]. The 2-D free space Green’s
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function is given by

Go(r) = —iHc(,z)(kr) (4.18)
LY ke s 1 4.19
~ - \/]—8;13-71'—’ or kr > ( . )
where
r = V/(:lt - .’L”_)z + (Z - 31)2 (4‘20)
H¢(,2)(kr) = Hankel function of the second kind of order zero and
argument kr,
(z,2) = coordinates of the receiver,
(z',2') = coordinates of the source point.
The paraxial form of r is
2
r ~ z—72 + (z—2) , for |z — 2|2 > |z — 2'|2. (4.21)

2(z — 2"
To obtain the desired Gaussian amplitude characteristic, the source location

is placed in complex space at (z',2') = (0, —7b) where b is a positive real constant

referred to as the “beam parameter”. (4.21) becomes

2
&Tr
~~ b4+ — e ‘62 2
Pom st gt for s Y > e
1 22 1, 22

X z+jb+ 52 (4.22)

55 — Jb5s.
24527272 g2
Substituting this result into (4.19) gives the paraxial free space Green’s function

for a complex source location as

ekb 1 _sz(l_*_li_) —]kb 2:2
Go(z,2) = ——= —¢ 222402 ) TN
V78mk /2 + 7b
for |2 + jb|? > |z/? (4.23)
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which has a quadratic phase front paraxial with respect to the z-axis, along with
a Gaussian amplitude distribution transverse to the direction of propagation. In
other words, for a constant z, the amplitude of the beam in the transverse z
direction is a Gaussian function centered on the z-axis. Notice also that (4.23)
is not singular at z = 0. This functional form appears often in the field of laser

optics because it is the dominant lowest order mode of a laser beam.

4.2.2 The Gaussian beam basis function and its properties.

The GB basis function used in this chapter has the form of (4.23) with a more

convenient constant in front,

. 2 2
b —sz(1+‘—2——;” ) ~1kb—F—
B(z,z) = 'J“’fe T224p e 2 zi+b
? Z+]b )

for |z + 7|2 > |z|? (4.24)

chosen so that B(0,0) = 1. Note that if b is made large enough, the GB will have
significant magnitude only in the paraxial region because it will die out quickly
away from the beam axis. This is the case for the well focussed GB’s which are
useful in the cavity scattering problem. Therefore, it is usually not necessary to
keep track of where the paraxial approximation is valid because it is essentially
automatically taken into consideration by the Gaussian amplitude taper.

Two important parameters of the GB are the phasefront radius of curvature
R(z) and the 1/e beam half-width w(z) which are given by

R(z) = %(z2+b2) (4.25)

5
w(z) = \[—-(22 + b2). (4.26)

kb
Of these two parameters, w(z) is the most often referred to because it describes

the effective boundary of the beam, outside of which the amplitude of the beam
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is less than 1/e of its on-axis value (8.7 dB down) for || > w(z). As z becomes
much larger than b, (4.26) indicates that the beam half-width approaches a linear

asymptote given by

w(z) = \/k%)z, for 22 > b2, (4.27)

Figure 48 shows a typical GB designated by shading within its 1/e half-width
boundaries, and Figure 49 shows the beam half-width w(z) plotted for different
values of b, along with the asymptotes. These two figures show only the region
z > 0 because the GB’s are symmetric about the z axis as well as the beam (z)
axis.

The beam waist, w, is defined as twice the minimum of the 1/e half-width:

W, = 2w(0)
2b
= 2\/? (4.28)

This is a measure of the width of the beam at its narrowest point, i.e., at its waist.
As Figure 49 shows, GB’s with smaller beam waists diverge faster than GB’s with
larger waists, as expected from a Maxwellian field function. However, beams with
large waists may not fit inside a waveguide cavity. This is the trade-off limitation
of using GB’s to track the fields inside waveguides. Beams which start out small
may diverge too fast and become too large to fit the waveguide after propagating
a short distance. On the other hand, beams which start out with a large waist
diverge slower, but they may already be too large. Therefore, this method which
tracks beams axially like rays, is expected to work well only for waveguide cavities
which are wide in terms of wavelength and not very long. The allowable length
to width ratio will increase with frequency because it is easier to fit well focussed

GB’s inside for electrically large geometries.
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Figure 48: A Gaussian beam, shaded within its 1/e boundaries.

ASYMPTOTES -

—x
——ar—d
peg—
— ——
e
—
——
——

Y ) Y ") . . “ Y u "y ™Y
Z (WAVELENGTHS)

Flgure 49: Gaussian beam half-width w(z) plotted for 3 values of the beam
parameter b.
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The far field form of the beam basis function (4.24) is also of interest mainly
so that GB’s can be matched to the far field pattern of an aperture using point

matching. Changing to the (p,#) coordinate system,

z = psiné
z = pcosh (4.29)
where
p = distance to the observer from the origin,
6 = angular displacement from the z-axis.

Substituting these into (4.24) and letting p extend to infinity yields the far field

GB basis function as

] . 1 2
B(p,0) = ‘/lpbe—ﬂ‘pe_fkw, for 18] < . (4.30)

This shows that the GB basis function is also Gaussian in angle in the far field.
The angular beam width, BW,, is defined as the 1/e angular width of the beam

in the far field and is given by

BWy = 2\[ﬁ (4.31)

Comparing (4.28) and (4.31) shows that the beam waist varies as Vb while the
angular beam width varies as 1/v/b. It follows that for a small angular beam
width the beam parameter b is large, giving a large beam waist. This was discussed
earlier in terms of the beam half-width w(z) of (4.26) and (4.27) and is illustrated
graphically in Figure 49, where the angles that the asymptotes make with the

z-axis correspond to half the angular beam width BWy.
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Figure 50: Plane wave incident on an aperture of width d.

4.3 Sub-Aperture Field Expansion Using Gaussian Beams

In this section, the fields radiating from an aperture illuminated by a plane
wave will be expanded in terms of shifted and rotated Gaussian beam basis func-
tions. Figure 50 shows the geometry. As mentioned before, the method presented
here is similar in concept to the method of [26] and [27] which uses a complete
Gabor expansion to establish an array of shifted and rotated Gaussian beams in
the aperture. The difference is that in the sub-aperture expansion method of this
chapter, the GB’s used in the array are all identical (except for their orientation),
in contrast to the Gabor method which gives rise to GB’s that have differing beam
waists depending on the amount of their rotation in the aperture. For the appli-
cation of this report, i.e., cavity scattering, it is more desirable to use identical
beams via the sub-aperture approximation which is conceptually simpler than the
Gabor expansion. Also, the Gabor expansion gives rise to rotated GB’s which are

not equally spaced in angle, as the sub-aperture method does. However, this is not

117



necessarily a drawback of using the Gabor method for cavity scattering problems,
just an added complication.

Some numerical results illustrating the technique of using GB’s in a sub-
aperture expansion of the fields radiating from an aperture will be presented at

the end of this section.

4.3.1 Formulation of the sub-aperture expansion.

The sub-aperture expansion method described in Appendix D is used to write

the fields in the z > 0 half-plane as a double summation of GB’s:

M N

Ugp = Z Z Am(0;,6n)B(zmn, zmn) (4.32)
m=—Mn=—-N

which is a sum over the 2M + 1 sub-apertures and the 2N + 1 rotated GB’s of

each sub-aperture, and

B(Tmn,zmn) = n'P rotated GB basis function of the mth sub-aperture,
Am(0;,0,) = expansion coefficient of the mn* GB,
(zmn,2mn) = relative coordinate system of the mnt* GB,
8, = angle between the n® beam axis and the z-axis.

The relative coordinate system of the mn® GB is shown in Figure 51. The zpn-
axis is the beam axis of the mn** GB which makes an angle of 8, with the z-axis.

Tmn and zj;,y, are given in terms of z, z, and 6, by

Tmn = (¢ —mA)cosb, — zsinb, (4.33)

Zmn = (¢ —mA)sinb, + z cos by (4.34)
where A is the sub-aperture size given by

A = . (4.35)




Figure 51: Coordinate system of the mnth shifted, rotated Gaussian Beam.
The GB’s are equally spaced in angle, i.e.,

0, = nAf (4.36)

Af = angular separation between adjacent rotated beams.

The GB basis function B(z, z) is defined by (4.24).

As discussed earlier, it is noted that the expansion of (4.32) is slightly differ-
ent than the Gabor based expansion used in [29,26] and [27]. Gabor’s expansion
consists of a double summation over shifted Gaussian functions with linear phases
[28]. It happens that in the paraxial region, a rotated Gaussian beam has a linear
phase through its waist. Therefore, the fields of an aperture which are written as
a Gabor expansion can be continued or propagated as GB’s beyond the aperture
by noting that the linearly phased Gaussian functions in the aperture correspond
to shifted and rotated Gaussian beams whose waists are in the aperture. This is
because the propagation characteristics of GB’s are well known everywhere within
the paraxial region. However, as mentioned earlier, Gabor’s expansion gives rise

to GB’s which are not all identical and equally spaced in angle, in contrast to the
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sub-aperture expansion of (4.32). In fact, as shown in [26], it also gives rise to
evanescent type beams which die out away from the aperture. Furthermore, Ga-
bor’s expansion is a double infinite summation which must be truncated somehow
to be of practical use, as investigated in [26]. In the course of the work detailed
in this report, it was found that the expansion of (4.32) is more useful for the
open-ended waveguide cavity application. As will be shown later, this expansion
also remains valid in both the near and far fields of the aperture.

To find the expansion coefficients A,,(6;,6,), the far field pattern of the m!h

sub-aperture illuminated by a plane wave is used. This is given by

jk e~Tk(em+mAsing) g . .
Upolpm,0m) = 2UA 8r N sinc §kA(sm0m—sm0,-)]
m

(4.37)
where

Pm;Om = polar coordinates of the mth sub-aperture (see Figure D.2),

Us = magnitude of the incident plane wave.

(4.37) is derived in Appendix D using the Physical Optics (PO) approximation
(or equivalently, the Kirchhoff approximation). This far field pattern can also be

written in terms of the far field form of the GB’s (4.30) as

N
UGB(vaom) = Z Am(ei,on)B(Pm,om:on) (4°38)
n=-—N
where
3O jkpm .~ Lkb(6m—nn6)?
B(pm,Gm,On) = ;)*e J pme 2 m . (4-39)
m

(4.38) is a superposition of rotated GB’s which have their maxima at 6,, = 6, =

nA#f, as (4.39) indicates.
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In the expansion of (4.38), it remains to find the expansion coefficients Am(8;,60n)
and the beam parameter b in terms of the PO function of (4.37) and the beam
spacing Af. Consider an arbitrary function f(z) expanded as a sum of equally

spaced Gaussian distributions with equal standard deviations o:

00 _!z—nJ[z
f(z) = Cne 2%  for —oo <z < o (4.40)
n=—oo
where
Cn = expansion coeflicient of the nth Gaussian distribution,
o = standard deviation of the Gaussian distributions,
§ = spacing between peaks of the Gaussian distributions.

It is theoretically feasible to allow o and § to vary with n, as might be true were
this a Gabor type expansion, but for our purposes it is desirable to have all the
Gaussian distributions (Gaussian beams) be the same. The latter requires that C
depend only on the function f(z), whereas o is then required to depend only on
the spacing § and not on f(z). To do this it is assumed that only adjacent beams
overlap enough to affect each other. So, beam n' overlaps beams n'+1andn'—1
but dies out too fast to significantly overlap with beams n' + 2 and n' — 2 and
hence also with all the other beams. It is further assumed that f(z) varies slowly
with respect to the beam spacing §. Figure 52 illustrates this by showing beam n'
with two adjacent overlapping beams and f(z) in the vicinity of z = n'é.

Using the above assumptions, (4.40) and its derivative at =z = n'é are given

approximately by

_ &% _ 8
f(n'8) = Cp_je 2% +Cp+Cpyqe 202 (4.41)
2 2
"(n'8) =~ § C _2% 5 C ‘Eé’f 4.42
f (n ) ~ '—';'2' nl__le g + ? nl+1€ -4 ( . )
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Figure 52: Gaussian basis function n' and the two adjacent basis functions along

with f(z).

It is desirable to eliminate f'(n'6) from (4.42) by approximating it with the average

of the slopes of f(z) on either side of = = n'§, i.e.,

1[£(n'6)— f(W'5 = 6) _ f(n'6 1 6) - f(n'8)
5[ 5 * 5 ]

= e f [ =08+ o f [on' + 1] (4.43)

f'(n'6)

Comparing (4.42) and (4.43) implies that each term in (4.42) corresponds to the

same term of (4.43). For example, equating the last terms,
e 1 '
520wy 27 = of [(n' +1)g], (4.44)

which yields the general relation

o2 &
Cn = memf(né). (4.45)

This result shows that the expansion coefficients C,, of (4.40) are proportional to
the function f(z) evaluated at the peaks # = né of the Gaussian distributions, as

is expected in this point matching technique.
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Using (4.45) in (4.41) gives

0.2 2
f(n'§) = 2752f[(n'—1)5]+ '52‘32 2f(n6 252—f[n +1)8]

(4.46)
which can be rearranged as
, 262 2 ! !
F(n'6) (;2— —em) = f[' -8 + £ [(n' +1)¢]. (4.47)

This equation could be solved for ¢, but it would depend on »’,

which is not
desirable for reasons mentioned earlier. However, another reasonable approxima-
tion is to assume that if f(z) is slowly varying over an incremental distance 26,

then f(n'é) is given approximately by the average of the function on either side of

r=n'8, as

f(n'6) ~ -;- {f [ = 1)8] + £ [(' +1)8]}. (4.48)

It is noted that this approximation and the one in (4.43) become exact as é ap-

proaches zero.

Using (4.48) in (4.47) yields the transcendental equation for o:

2 1 5

2 —

ﬁ —_ 5620 -1 = 0, (449)
which unfortunately has no real solution. However, it does have a maxima which
is close to a solution, as shown in Figure 53. This maxima is found by setting the
derivative of (4.49) equal to zero and solving for §2/c2, which yields

o

w7 = 2logd. (4.50)

Using this result along with (4.45) provides the two required parameters of the

point-matched Gaussian expansion of (4.40):

§
~ .6006 6 (4.51)

7= V2Ilogd ~

123




Eqn.(4.49)
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5
8
ol
Figure 53: Plot of Equation (4.49).
Cpn = 1 f(né) = .7213 f(né). (4.52)

log4

Comparing the expansions of (4.40) and (4.38) along with (4.39), the following

correspondences are evident:

z — Oy
6 — A6

— — kb

B .
Cn — Am(gi’on)\f‘]“e_]kpm
Pm

f(n8) — Upo(pm, 6n)

which along with (4.37), (4.51) and (4.52) gives

2log 4

b = TAe
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(4.55)

(4.56)

(4.57)

(4.58)



2 / ; in 6: 1
Am(0;,60n) = @UOA %e_]k"msmaisinc -2—kA(sin0n—sin0,-)}.

(4.59)
(4.58) gives bin terms of Ad, either of which can be chosen to best fit the given sub-
aperture size. For example, Af should be small enough so that the far field pattern
is adequately reproduced by the GB expansion. This is achieved by requiring that
there are at least three or four GB’s per lobe of the far field pattern. However,
for a small sub-aperture size the lobes might be quite large, so a larger number of
narrower GB’s may be desirable to keep the GB’s well focused and confined within
the paraxial region. On the other hand, (4.58) shows that a small A8 will make b
large which will make the beam waist, wo, of (4.29) large, as discussed earlier in
terms of the angular beam width, BWy. In fact, the angular beam width can now

be written in terms of the beam spacing by substituting (4.58) into (4.32):

BW, = —>_Af ~ 14427 A (4.60)

Viog 4

which shows that the angular beam width is a little larger than the angular beam

¢

spacing, as might be expected because the GB’s should overlap somewhat to ade-

quately cover all space.

4.3.2 Numerical results of the Gaussian beam sub-aperture expansion.

Consider the aperture geometry of Figure 54. It shows a 14.9 wavelength
aperture illuminated by a plane wave incident at 15° and has five sub-apertures of
width 2.98 wavelengths, each. Figure 55 shows the physical optics far field pattern
of one of the sub-apertures (solid line) and its GB expansion (dotted line) which
used approximately 3.5 beams per lobe of the pattern (actually, this means 3.5
beams per side lobe because the main lobe is approximately twice the width of a

side lobe). Also shown are four typical adjacent GB’s inside the main lobe which
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Figure 54: Aperture illuminated by a plane wave incident at 15° with 5
sub-apertures.

together sum up to give the middle part of the main lobe. The GB expansion can
be improved in accuracy by increasing the number of beams per lobe, as shown in
Figure 56, which is the same case as in Figure 55 except that 4.5 beams per lobe
are used.

Figures 57 and 58 show the total aperture far field pattern found by summing
the five individual sub-aperture patterns, using 3.5 and. 4.5 beams per lobe, re-
spectively (dotted line). They both give excellent agreement with the PO result
(solid line), with the 4.5 beams per lobe case being slightly more accurate than
the 3.5 beams per lobe case, as expected.

Because the GB’s are valid everywhere, the radiated fields can be back-tracked
to the aperture and compared with the incident field in the aperture. Figures
59(a) and (b) show the phase and amplitude of the fields in the plane of the
aperture, respectively, corresponding to the far field pattern of Figure 57, which

used 3.5 beams per lobe. The agreement is quite good, showing that the Gaussian
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Figure 55: Far field pattern of a sub-aperture illuminated by a plane wave and 4
typical component Gaussian beams, 3.5 beams/lobe. A = 5.5°, b = 64.0 ),
Weo = 9.0 A.
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Figure 56: Far field pattern of a sub-aperture illuminated by a plane wave, 4.5
beams/lobe. A8 =4.3%°, b =105.8 A, w, = 11.6 .
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Figure 57: Far field pattern of an aperture illuminated by a plane wave. 5

sub-apertures, 3.5 beams/lobe, A§ = 5.5°, b = 64.0 A, wo = 9.0 A.
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Figure 58: Far field pattern of an aperture illuminated by a plane wave. 5
sub-apertures, 4.5 beams/lobe, A8 = 4.3°, b = 105.8 A, wo =11.6 .
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Figure 59: Fields in the plane of an aperture illuminated by a plane wave. 5
sub-apertures, 3.5 beams/lobe, b = 64.0 A, w, = 9.0 A
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beam expansion of fieids can be used in the aperture as well as in the far field,
and since the individual GB’s are solutions to the wave equation, the expansion
is valid everywhere in between. Also, because GB’s propagate independently of
one another, each beam can be tracked individually via reflections/transmissions
through complex environments, provided that there is an adequate beam tracking
procedure available.

Notice that for the cases of Figures 55, 57 and 59, the width of the beam
waist wo, is 9.0 A, which is larger than the sub-aperture width of 2.98 A and larger
than half the aperture width of 14.9 A. This suggests a problem may arise when it
comes to tracing the GB’s inside a waveguide cavity because the beams may start
out with a width comparable to that of the cavity aperture. This is, in fact, the
main limitation of the GB tracking method when applied to open-ended waveguide

cavities and will be discussed further in later sections of this chapter.

4.4 Tracking the Gaussian Beams Axially Through the Interior of the
Cavity

Once the GB’s have been established in the sub-aperture expansion of the
fields in the open end of the waveguide cavity, as described in Section 4.3, they
must each be tracked individually through the interior of the cavity to the ter-
mination. This requires insight into how the beams propagate and reflect in the
presence of waveguide walls. To do this rigorously, the fields inside the cavity due
to a line source must be found as accurately as possible, and then the line source
can be given a location in complex space; this directly furnishes the propagation
of a Gaussian beam within the same environment, as discussed in (27,34,35,36,37].
Recall that in Section 4.2, a line source located in complex space generates a Gaus-

sian beam in the paraxial region along some axis. However, to find the fields due
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to a line source in the presence of arbitrarily shaped waveguide walls as a function
of only the source and receiver location is very difficult computationally because
the reflection points must be searched for numerically. When the line source is lo-
cated in complex space, this search becomes an order of magnitude more difficult
because the reflecting surfaces have extensions into complex space. This problem
has been solved only for a few simple configurations such as reflection and trans-
mission at a planar or curved interface between two dissimilar dielectrics [34,35],
single reflection from a parabolic reflector antenna [36], the multiple reflection of
a OB inside a circular cross section [37], and the transmission of GB’s through a
2-D radome [27].

Inside an arbitrarily shaped waveguide cavity, it is convenient to track the
GB’s approximately like rays by tracking only their beam axes. In other words,
the GB is assumed to have most of its energy confined to a narrow region around
the beam axis, and a beam which is incident on a curved reflecting surface is
assumed to give rise to a new reflected beam which is also Gaussian in nature. If
the parameters of this new GB can be found easily in terms of the incident beam,
the GB can be traced from reflection to reflection, much like tracing a ray in the
Geometrical Optics (GO) method. However, it has been shown in [35] that the
reflected beam in this case may look Gaussian for many practical cases, but in
general it has asymmetries present. These asymmetries arise for cases where the
incident GB has a width comparable to the radius of curvature of the surface or
when the incident GB grazes the surface as shown in Figure 60. Also, because
the curvature of the interior waveguide walls gradually changes, the GB’s must
be kept narrow enough so that the area of the surface that they illuminate has
an approximately constant radius of curvature. These limitations are not always

easy to overcome, especially at lower frequencies and for waveguide cavities which
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Figure 60: A Gaussian beam which reflects near grazing from a curved surface.

are long compared to their width. This will be discussed further in the numerical
results section.

A simple, approximate way of finding the axial reflection of a Gaussian beam
from a curved surface very similarly to GO ray tracing, is derived in this section.
As will be seen, the main difference between the reflection of the beam axis and
GO reflected ray tracing is that, unlike the real GO rays which have real caustic
locations, the reflected beam will have complex caustic positions. This is not
surprising considering that GB’s can be derived from a source which is located in
complex space, as described in Section 4.2. In the derivation, it is assumed that
the incident GB illuminates a small area on the surface and that it does not come
close to grazing incidence on the surface.

Figure 61 shows the geometry for a GB reflecting off a curved surface. It

shows an incident beam field given by
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Figure 61: Gaussian beam reflecting off a curved surface.
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for z < z(', + p'c. (4.61)

In this approximation, the reflected field is assumed to be a new Gaussian beam
whose axis intersects the surface at the same point as the incident beam axis. The

reflected beam is given by
—20)z2 2
. — 1 (= zo)z 1 kb
Uz z = U _‘]“b_e ]k[z+2(z—zo)2+b Je 2—(2_20)§+b2
r(®2) °Vz—z,+7b
<0
for z > 2z + pl. 4.62
(o] c

These have the same form as the beam basis function of (4.24) but are shifted

along the z-axis. The parameters used in (4.61) and (4.62) are defined as

z = the total phase propagation at any point along the beam axis,
¢ = the coordinate transverse to the z-axis,
Uo, U, = coefficients of the beams,
b, = beam parameters,
Zo, z(', = beam waist positions along the z-axis,

where the primed quantities are associated with the GB before reflection and the
corresponding unprimed quantities are associated with the GB after reflection.
Note that the z-axis, which is always the beam axis, changes directions after re-

flection. Again referring to Figure 61,

pe,pc = distances from the beam waist to the point of reflection Q,

before and after reflection, respectively,

R:. = radius of curvature of the surface at Q,
7 = unit vector normal to the surface at the point Q,
0;,0, = angles the incident and reflected beam axes make with n,
respectively.
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This derivation is also valid for concave surfaces for which R is negative.

The parameters of the reflected beam, Uo, b, 2o, pcs and 6, can be found
in terms of the incident parameters by matching the fields on the surface in the
vicinity of the reflection point Q of the beam axis. First, matching the beams

exactly at point @ gives

l ~ . [ 36 _;
R(8;)U, me‘ﬂ“(lzﬂ’ﬁ) =~ U, p_J:]__I;e—Jk(szpc) (4.63)
c C

R(6;) = reflection coeflicient at Q.

where

This equation yields U, and 2z, as

[ V(pet+3
U, = mmmaii:$§ (4.64)

20 = 2o% e Pe (4.65)

The remaining parameters can be found by expanding each of the incident
and reflected beam fields in a Taylor series as a function of the displacement from
point Q along the surface. Equating the constant terms of these two series gives

(4.63) above. Equating the linear terms yields the relation

which is the law of reflection for a GO ray. Finally, equating the quadratic terms
of the two Taylor series expansions and using the reflection law of (4.66) yields

1 1 2

— = - 4.67
pc+ jb pr+3jb'  Rccost; (4.67)

This is the same result as GO would give for a ray along the beam axis, except that
the caustic distances are now complex, with real parts pc and p.. and imaginary

parts jb and jb'.
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pc and b can be solved for separately by inverting (4.67) and equating the real

and imaginary parts, which yields

! / 12
Pc(Recos; +2p,) + 2b
= 9,
pe = Hecosbil g st + 2002 + 407

~ (Rccos 9;)?

b = ¥ = : 4.69
(Rccos; + 2pL)2 + 4b'2 (4.69)

(4.68)

Notice from (4.69) that b is going to be smaller than b’ for most cases, with the
possible exception being for cases when R, or p is negative. The angular beam
width BWy, given by (4.34) is inversely proportional to b. What this means is that
the a GB will usually become more divergent upon reflection from a curved surface.
Therefore, the farther a GB propagates inside a curved waveguide cavity, the more
it will diverge and the more likely it will become too large to fit nicely inside the
cavity and satisfy the restrictions of the axial beam tracing approximation. This
is what limits the length to width ratio of the waveguide cavities for which this
method can be applied.

The approximations used above assumed that the incident beam illuminated
an area confined to the vicinity of the reflection point Q. In reality, this condition
may be difficult to achieve for the two cases mentioned earlier, namely, for GB'’s
whose beam half-width at the point of reflection w(zf + p.) given by Equation
(4.27) is comparable to the surface radius of curvature R., and for beams‘ which
come close to grazing the surface. If the beam illuminates too large an area of the
surface, such as in the two cases mentioned above, the reflected field will no longer
be Gaussian in nature. In most cases it may resemble a Gaussian beam, but it will
probably be asymmetric to some extent.

Once the axis of a GB has been tracked to the termination via the axial
approximation the fields of the beam in the presence of the waveguide walls in

the termination plane must be found. If the beam is narrow enough and not close
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to the waveguide walls at the termination, as shown in Figure 62, the fields are
simply those of the GB basis function in free space. However, if the beam crosses
the termination plane near a wall, the fields of the image beam should also be

included, as shown in Figure 63.

4.5 Numerical Results and Discussion of the Gaussian Beam Shooting
Method

In this section, some numerical results are presented which illustrate the use
and accuracy of the axial Gaussian beam shooting and tracking method in compar-
ison with other methods. All of the geometries included are made up of perfectly
conducting surfaces.

Figures 64(a) and (b) are plots of the magnitude of the fields at a cross-section
inside a semi-infinite parallel plate waveguide illuminated by a plane wave, perpen-
dicular (1) and parallel (||} polarization, respectively. Once again, perpendicular
polarization means the E-field is normal to the plane of the page and parallel po-
larization means the H-field is normal to the plane of the page. For comparison,
Figure 64 includes results found using the hybrid asymptotic high frequency modal
method described in Chapter II. This method is considered sufficiently accurate
to be used for reference solutions. Also shown in the figures is the GO ray tracing
solution which is described Chapter III. As the plots show, the GO ray tracing so-
lution is discontinuous due to shadowing effects of the GO field. The GB solution
agrees nicely with the reference modal solution.

Figure 65 is a plot of the backscattered fields of an open-ended parallel plate
waveguide cavity with a short circuit termination for L polarization, found using
the reciprocity integral formulation of Section 4.1 with Gaussian beams. In this

and all subsequent plots, the scattering by the rim at the open end is included
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Figure 62: Gaussian beam crossing the plane of the termination inside a
waveguide cavity, away from the walls.
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Figure 63: Gaussian beam crossing the plane of the termination inside a
waveguide cavity, near a wall.
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in the calculations, and the wedge angle of the rim WA is zero. The figure also
shows plots of the modal reference solution and the GO /Al ray tracing solution.
The GB solution agrees nicely with the reference solution for all angles shown,
while the GO/AI solution agrees well only for incidence angles within about 35°
of of the guide axis. It is expected that the GB method should work very well for
waveguide cavities with planar walls because the GB reflection from these walls is
known exactly from image theory. It is the axial approximation used to find the
reflection of GB’s from curved walls (see Section 4.4) which introduces the most
error in the GB tracing method.

Figures 66(a) and (b) are plots of the backscatter from an open-ended 2-
D S-shaped waveguide cavity with a planar termination, 1 and || polarizations,
respectively. The cavity is made up of three uniform waveguide sections, two
annular guides followed by a parallel plate guide, so the hybrid modal method
is used as a reference solution. Each of the sections has an axial length of 5
wavelengths making the overall axial length 15 wavelengths giving a length to
width ratio L/d of one. The GB solution used 7 sub-apertures (M = 3) and an
angular increment A6 of 7.69°. The beams covered an angular range of +60°
making N = 7 and giving a total of 105 GB’s. This choice allowed 3.5 beams per
lobe (see Section 4.3 for a discussion). Using (4.45) and (4.28), the beam parameter
is b = 32.7)\ and the beam waist width is w, = 6.45X. The particular choices of
sub-aperture size and angular increment were determined by trial and error. The
values were used which gave the minimum number of beams which reached the
termination too wide to fit in the guide. As a general rule of thumb, it is best to
choose parameters which give a beam waist width w, in the open end which is less
than half the width of the waveguide and an angular beam width BWj which is

less than 10°. Ideally, both w, and BWy should be as small as possible, but since
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they are inversely proportional, a trade-off is necessary. For this relatively shallow
cavity, the GB solution agrees very well with the modal reference solution.

Figures 67(a) and (b) are the same as Figures 66(a) and (b), respectively,
except that the waveguide sections are now each 10 wavelengths long giving an
overall L/d of two. Figures 68(a) and (b) are again the same as Figures 66(a) and
(b), respectively, except that the waveguide sections are now each 15 wavelengths
long giving an overall L/d of three. The results still agree quite well, but perhaps
not as well as for the shallower L/d = 1 waveguide cavity.

Figures 69(a) and (b) are the same as Figures 68(a) and (b), respectively, but
an additional parallel plate waveguide section of length 15 wavelengths has been
inserted between the two annular sections giving an overall L/d of four. These
figures show the GB solution is getting worse for longer guide lengths. This is due
to the fact that the GB’s diverge and get wider the farther in they go until they
are too wide to fit inside the waveguide. However, because GB’s become better
focussed at higher frequencies, i.e., they stay narrow over longer propagation paths,
the cavities which the GB tracing method can handle are determined by frequency
as well as the axial length to width (L/d) ratio. Figure 70 is the same as Figure
69(a) except the frequency is doubled. For this plot 11 sub-apertures and an
angular increment of 6.04° were used. It shows a much better agreement with the
modal solution than Figure 69(a) does, as expected.

It was found from experience that a general rule of thumb for applying the

GB tracing method is
1
Lid < Zd//\ (4.70)

where d and L are the approximate waveguide cavity width and axial length, re-
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